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Le produit en couronne libre d’un groupe quantique
compact par un groupe quantique d’automorphismes

Résumé

Dans cette thèse on définit et étudie le produit en couronne libre d’un groupe

quantique compact par un groupe quantique d’automorphismes, en généralisant la

notion de produit en couronne libre par le groupe quantique symétrique introduite

par Bichon.

Notre recherche est divisée en deux parties. Dans la première, on définit le

produit en couronne libre d’un groupe discret par un groupe quantique d’auto-

morphismes. Ensuite, on montre comment décrire les entrelaceurs de ce nouveau

objet à l’aide de partitions non-croisées et décorées ; à partir de cela et grâce à

un résultat de Lemeux, on déduise les représentations irréductibles et les règles

de fusion. Ensuite, on prouve des propriétés des algèbres d’opérateurs associées à

ce groupe quantique compact, comme la simplicité de la C*-algèbre réduite et la

propriété d’Haagerup de l’algèbre de von Neumann.

La deuxième partie est une généralisation de la première. D’abord, on définit la

notion de produit en couronne libre d’un groupe quantique compact par un groupe

quantique d’automorphismes. Après, on généralise la description des espaces des

entrelaceurs donnée dans le cas discret et, en adaptant un résultat d’équivalence

monöıdale de Lemeux et Tarrago, on trouve les représentations irréductibles et

les règles de fusion. Ensuite, on montre des propriétés de stabilité de l’opération

de produit en couronne libre. En particulier, on prouve sous quelles conditions

deux produits en couronne libres sont monöıdalment équivalents ou ont le semi-

anneau de fusion isomorphe. Enfin, on démontre certaines propriétés algébriques et

analytiques du groupe quantique duale et des algèbres d’opérateurs associées à un

produit en couronne. Comme dernier résultat, on prouve que le produit en couronne

de deux groupes quantiques d’automorphismes est isomorphe à un quotient d’un

particulier groupe quantique d’automorphismes.





The free wreath product of a compact quantum group by a
quantum automorphism group

Abstract

In this thesis, we define and study the free wreath product of a compact quan-

tum group by a quantum automorphism group and, in this way, we generalize the

previous notion of free wreath product by the quantum symmetric group intro-

duced by Bichon.

Our investigation is divided into two part. In the first, we define the free wreath

product of a discrete group by a quantum automorphism group. We show how to

describe its intertwiners by making use of decorated noncrossing partitions and

from this, thanks to a result of Lemeux, we deduce the irreducible representations

and the fusion rules. Then, we prove some properties of the operator algebras

associated to this compact quantum group, such as the simplicity of the reduced

C*-algebra and the Haagerup property of the von Neumann algebra.

The second part is a generalization of the first one. We start by defining the

notion of free wreath product of a compact quantum group by a quantum auto-

morphism group. We generalize the description of the spaces of the intertwiners

obtained in the discrete case and, by adapting a monoidal equivalence result of

Lemeux and Tarrago, we find the irreducible representations and the fusion rules.

Then, we prove some stability properties of the free wreath product operation. In

particular, we find under which conditions two free wreath products are monoidally

equivalent or have isomorphic fusion semirings. We also establish some analytic

and algebraic properties of the dual quantum group and of the operator algebras

associated to a free wreath product. As a last result, we prove that the free wreath

product of two quantum automorphism groups can be seen as the quotient of a

suitable quantum automorphism group.
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Introduction

The general research area of this thesis is the theory of quantum groups so we
begin with a brief presentation of this notion. The term quantum group is not
associated to a unique definition, but it is used to denote a multitude of similar
objects. Anyway, the underlying idea common to all these objects is to extend
the notion of group to the framework of the noncommutative geometry. There are
two main approaches to this subject: the first one is completely algebraic while
the second one is more analytic. In the algebraic approach, the first important
results come from Drinfeld and Jimbo in [Dri86, Dri87, Jim85]. By making use of
a parameter q, they deformed the universal enveloping algebra of some Lie algebras
and gave to this objects a Hopf algebra structure. This kind of quantum groups
and their representation theory have been widely studied and investigated. The
main results achieved within this setting can be found in the books [Kas95, CP94].

Now, we focus on the second approach, from which the theories used in this
thesis were obtained. It has a more analytic flavour and has been developed in
the context of operator algebras. Pontryagin proved in [Pon34] that it is possible
to give a structure of locally compact abelian group to the set of the characters
of a locally compact abelian group G, the so-called dual of Pontryagin. Moreover,
he showed that G is naturally isomorphic to its bidual. This construction is no
longer valid if the hypothesis of commutativity is dropped, therefore the problem
at the origin of this point of view is the construction of a generalisation to the
non-abelian case of the Pontryagin duality. A first significant contribution in this
direction was given in [Tan38] by Tannaka. By observing that the characters of an
abelian group correspond to its irreducible representations, he defined the dual of a

11



12 INTRODUCTION

compact group G as the category of the finite dimensional unitary representations
of G endowed with the operations of direct sum and tensor product. The work
of Tannaka was further developed by Krein (see [Kre49b, Kre49a, Kre50]) and
all these results are known as Tannaka-Krein duality. Other possible notions of
duality were introduced and generalized in the following, but all these theories did
not extend to every locally compact group. The first general answer was given by
Vainerman and Kac in [VK73, VK74] and by Enock and Schwartz in [ES73, ES75]
(see also [ES92]). The object at the center of their theory is called Kac algebra;
it is a von Neumann algebra endowed with a special structure. As in the case of
the Pontryagin duality, it is possible to define a dual Kac algebra and every Kac
algebra is isomorphic to its bidual.

In this context Woronowicz presented his theory centred on the notion of com-
pact matrix pseudogrup [Wor87, Wor91]. These objects, defined in the C*-algebraic
framework, give rise to the theory of compact quantum groups which is at the base
of this thesis. In [Wor87] Woronowicz defined a compact matrix pseudogroup
as a unital C*-algebra with an additional structure (it is also a Hopf algebra) and
which satisfies certain properties. The main example for this new theory is SUq(2),
a quantum deformation of the classic SU(2). In [Wor98], while presenting a sort
of revision and simplification of his own theory, he extended this notion to the
slightly more general one of compact quantum group. Every commutative com-
pact quantum group is isomorphic to the C*-algebras of continuous functions on a
compact group, so a general (noncommutative) compact quantum group should be
imagined as the C*-algebra of continuous functions on an abstract compact object.
For this reason, all the properties and the statements about compact quantum
groups actually refer to the corresponding concrete Hopf algebras. The main point
of strength of this theory is the existence and the uniqueness of a Haar state, the
analogue of the Haar measure of a classic compact group. Another crucial result
due to Woronowicz is a quantum version of the Tannaka-Krein duality. By using
the results of Tannaka and Krein as a starting point, Woronowicz was able to link
every compact quantum group to its representation theory. In particular, he proved
that a compact quantum group can be completely reconstructed by knowing its ir-
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reducible representations and the fusion rules between them, i.e. the rules allowing
to decompose the tensor product of two irreducible representations as direct sum
of irreducible representations (see [Wor88]). All these data permit to determine
the representation category of a compact quantum group, whose objects are the
finite dimensional unitary representations endowed with the operation of direct
sum and tensor product. In the C*-algebraic framework, a more general approach
to the problem, allowing to deal with the non-compact case and to include some
examples of quantum groups excluded from Woronowicz’s theory, was proposed by
Baaj and Skandalis in [BS93] with the notion of multiplicative unitary. In partic-
ular, the multiplicative unitary associated to a compact quantum group satisfying
certain basic properties can be seen as a huge source of information, as it allows to
entirely reconstruct the group itself and its dual. This object, however, turned out
to be quite di�cult to use in the general context of quantum groups. The approach
which is nowadays considered as the most general and comprehensive was intro-
duced by Kustermans and Vaes in [KV99] and [KV00]. Their theory which can be
developed in both the frameworks of C*-algebras and of von Neumann algebras,
provides and studies the notion of locally compact quantum group. With respect
to the previous and less general theories, its main specificity is the assumption of
the existence of left and right Haar weights.

The first Woronowicz compact quantum group which has been studied is SUq(2),
for q œ [≠1, 1], q ”= 0. Later on, the quantum versions of the classic groups On and
Un were introduced by Wang in [Wan93, Wan98] and by Wang and Van Daele in
[VDW96]; they are denoted O+

n and U+

n respectively. The quantum analogue of
Sn, denoted S+

n , was defined by Wang in [Wan98]. They are the noncommutative
versions of the spaces of the continuous functions C(On), C(Un) and C(Sn). These
spaces can be seen as the C*-algebras generated by the matrix coordinates uij of a
matrix u of order n subject to some relations. The presentations of these commu-
tative C*-algebras can be chosen in order to include the commutativity relations
uijukl = ukluij between the generators. The quantum versions are then obtained
by removing these commutativity relations. The matrix u is a representation of
the group and it is called fundamental because it allows to reconstruct all the
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other ones. The operation of ”liberation” of the generators from some of the rela-
tions explains and justifies the terminology of free quantum groups used to refer
to these objects. A first significant step in their investigation was done by Banica
in [Ban96, Ban97, Ban99] with the description of their representation theory. He
also proved the presence (or absence) of some properties of the associated algebras
such as simplicity and amenability.

This way of proceeding can be adopted as a sort of natural scheme when
analysing a specific compact quantum group. Indeed, in view of the Tannaka-
Krein duality, the representation category is a crucial and primordial object to
consider in the analysis. To this purpose, it is possible to use di�erent techniques
depending on the group considered; for the needs of our thesis, we want to stress
the combinatorial approach adopted for example in [Ban99, Ban02, BS09]. In all
these cases the spaces of intertwiners between tensor products of the fundamental
representation have been described by using Temperley-Lieb diagrams or possibly
coloured (noncrossing) partitions. Moreover, in [BS09] the term easy quantum
group was introduced to denote a family of compact quantum groups whose spaces
of intertwiners can be described by means of noncrossing partitions. These de-
scriptions have subsequently allowed to deduce the irreducible representations and
the fusion rules.

As said, another aspect of the study of a compact quantum group concerns
the analytic properties of the associated algebras, such as the universal or reduced
C*-algebra and the von Neumann algebra. In many cases, the knowledge of the
representation category and, in particular, of the fusion rules has been fundamental
to prove these properties. As an example, now we recall some results obtained in
this context. The simplicity of the reduced C*-algebras of U+

n and S+

n was proved
by Banica in [Ban97] and by Brannan in [Bra13] respectively. The Haagerup prop-
erty of the von Neumann algebras associated to O+

n , U+

n and S+

n was established by
Brannan in [Bra12, Bra13]. Vaes and Vergnioux proved in [VV07] the exactness of
Cr(O+

n ) and the fullness of LŒ(O+

n ). The weak amenability of this von Neumann
algebra is due to Freslon [Fre13]. In [Fim10], Fima analysed the property T and
proved that free quantum groups do not have this property. De Commer, Fres-



INTRODUCTION 15

lon and Yamashita in [DCFY14] demonstrated that the discrete duals of O+

n and
U+

n have the central ACPAP (almost completely positive approximation property)
which implies the CCAP (completely contractive approximation property). They
also proved that the associated von Neumann algebras do not have any Cartan
subalgebra.

From these basic compact quantum groups it is possible to construct many
other examples. They can be obtained as a generalization of these groups or by
making use of di�erent kinds of product operations. The families O+

F and U+

F ,
for example, are obtained by modifying the usual relations of the free quantum
orthogonal and unitary groups with a matrix F . As a generalisation of the quan-
tum symmetric group S+

n and of the classic notion of automorphism group Wang
in [Wan98] defined the quantum automorphism group. Always Wang in [Wan95]
introduced the notion of free product of two compact quantum groups and recon-
structed its representation theory from the representations of the factors. Another
kind of product was introduced by Bichon in [Bic04]; it is the free wreath product
of a compact quantum group by the quantum symmetric group.

In this thesis we want to extend this product to the free wreath product of a
compact quantum group by a quantum automorphism group. Therefore, we focus
now more specifically on the notions and on the results at the basis of our work.

It is well known what the automorphism group of a given space is. As a basic
example, it is always useful to think to Sn as the universal group acting on a set
of n points or equivalently to the group of automorphisms on a set of n point. It
is then natural to look for a quantum analogue of this notion. As already said,
the answer was given by Wang, who introduced in [Wan98] the notion of quantum
automorphism group of a quantum finite measured space. He proved that, in
general, it is not possible to define the notion of quantum automorphism group of
a finite dimensional C*-algebra B, but, if B is endowed with a state Â, the category
of compact quantum groups acting on B and leaving the state Â invariant admits
a universal object, called quantum automorphism group and denoted Gaut(B,Â).
Similarly to the classical case, a basic example here is given by S+

n , the quantum
symmetric group. In e�ect, C(S+

n ) is exactly C(Gaut(Cn, tr)). The representation
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theory of Gaut(B,Â) was first studied by Banica in [Ban99, Ban02]. He showed that,
if Â is a ”-form and dim(B) Ø 4, the irreducible representations and the fusion
rules are the same as SO(3). In order to obtain these results, he analysed the
spaces of intertwiners between tensor products of the fundamental representation
and showed that there is a b�ection between a linear basis of these spaces and
the Temperley-Lieb diagrams. Later on, in [BS09] Banica and Speicher proved
that, in the case of C(S+

N), it was possible to describe the intertwiners in a simpler
way by making use of noncrossing partitions. Always in [BS09] this combinatorial
interpretation in terms of noncrossing partitions was extended to O+

N , B+

N and H+

N

(respectively the orthogonal, bistochastic and hyperoctahedral groups).

The other important notion to consider is that of free wreath product by the
quantum symmetric group. In the classical case, the wreath product of a group G
by Sn, denoted G Ó Sn is defined thanks to the natural action of Sn on a set of n
copies of G. Bichon in [Bic04] introduced the quantum version G Óú S+

n by using an
action of S+

n on n copies of G. In [Bic04] a first easy case was investigated more in
detail and its representation theory was described: the free wreath product ‚Z

2

ÓS+

n .
A more general analysis of these products was done in three successive steps. In
[BV09], Banica and Vergnioux showed that the quantum reflection group Hs+N is
isomorphic to ‚Zs Óú S+

n and found its irreducible representations and fusion rules
in the case n Ø 4. Later on, Lemeux in [Lem14] extended this result to the free
wreath product ‚� Óú S+

n , where � is a discrete group and n Ø 4. An even more
general result was finally presented by Lemeux and Tarrago in [LT14], where they
considered the case of the free wreath product of a compact matrix quantum group
of Kac type G by S+

n and found its representation category by using an argument
of monoidal equivalence.

In this last article, it is also possible to find many results concerning the prop-
erties of the operator algebras associated to a free wreath product. More precisely,
by using a result from [DCFY14], it has been proved that, if G has the Haagerup
property, also the von Neumann algebra LŒ(G Óú S+

n ) has this property. Moreover,
the reduced C*-algebra Cr(G Óú S+

n ) is exact if Cr(G) is exact. In [Lem14], Lemeux
proved the simplicity and uniqueness of the trace for the reduced C*-algebra in
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the discrete case. His argument, based on the so-called Powers method and on the
simplicity and uniqueness of the trace of Cr(S+

n ) (n Ø 8) demonstrated by Bran-
nan in [Bra13], was extended by Wahl in [Wah14] to the general case of a matrix
quantum group of Kac type.

The definition of the free wreath product by S+

n can be interpreted also from a
more geometric point of view; indeed, in analogy with the classical case, it can be
used to describe the quantum symmetry group of n copies of a finite graph in term
of the symmetry group of the graph and of S+

n . It is well known that the automor-
phism group of a finite graph X with n vertices can be seen as a suitable quotient
of Sn. This object which is also called group of the symmetries of X, is usually de-
noted G(X). The geometric interpretation of the classic notion of wreath product
between symmetry groups is given by formulas such as G(X ú Y ) ≥= G(X) ÓG(Y ),
for a suitable notion of product ú and for graphs satisfying certain conditions. For
example, when dealing with the so-called lexicographic product, a characterisation
of the graphs satisfying such a relation was given by Sabidussi in [Sab59].
The quantum analogue of G(X) was introduced by Bichon. In [Bic03], he defined
the notion of quantum automorphism group of a finite graph X as a subgroup of
S+

n . Such a subgroup which is usually denoted G+(X), is obtained by adding to
C(S+

n ) the relations corresponding to the commutativity between its fundamental
representation and the adjacency matrix of X. Then, as in the classic case, the
notion of free wreath product can be geometrically interpreted by formulas such
as G+(X ú Y ) ≥= G+(X) Óú G+(Y ). The investigation was started by Bichon in
[Bic04] and a first significant result was given some years later by Banica and Bi-
chon in [BB07]. They proved the validity of the formula when X ú Y is a coloured
lexicographic product. In [Cha15], Chassaniol considered the lexicographic (non
coloured) product and proved that Sabidussi’s characterisation of the graphs veri-
fying such a relation can be extended the quantum case.

In this thesis, we aim at providing a further generalization of these results, by
taking into account the free wreath product of a compact quantum group by a
general quantum automorphism group.

The structure of the thesis will reflect the successive phases of development
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of the project; first, we will define and investigate the free wreath product of a
discrete group by a quantum automorphism group and, only in a second time,
we will deal with the general case. The definition of the free wreath product by
a quantum automorphism group is not an immediate generalisation of Bichon’s
definition, but it is inspired by Example 2.5 in [Bic04] where it is proved that,
for every discrete group � and n œ Nú, the universal C*-algebra generated by the
coe�cients aij(g), 1 Æ i, j Æ n, g œ � of the matrices a(g) and with relations
aij(g)ú = aij(g≠1)

aij(g)aik(h) = ”jkaij(gh) aij(g)akj(h) = ”ikaij(gh)
n
ÿ

j=1

aij(e) = 1 =
n
ÿ

i=1

aij(e)

can be endowed with a compact quantum group structure and it is isomorphic to
the free wreath product ‚� Óú S+

n . For our purposes, it is interesting to observe that
these relations are equivalent to the following ones, for all g, h œ �:

a(g) is unitary m œ Hom(a(g)¢ a(h), a(gh)) ÷ œ Hom(1, a(1))

where m and ÷ are the multiplication and the unity of Cn respectively. This
characterisation is particularly significant because, in [Ban99], Banica proved that
the quantum automorphism group of a n-dimensional C*-algebra B endowed with
a state Â can be defined as the universal C*-algebra generated by the coe�cients
uij, 1 Æ i, j Æ n of a matrix u with relations such that

u is unitary m œ Hom(u¢2, u) ÷ œ Hom(1, u)

where m and ÷ are the multiplication and the unity of B respectively. With
this informations in mind, after recalling that S+

n = Gaut(Cn, tr), we can give the
following definition.

Definition. Let � be a discrete group and B a finite dimensional C*-algebra
endowed with a faithful state Â. Let Cú(�) úw C(Gaut(B,Â)) be the universal
unital C*-algebra with generators a(g) œ L(B) ¢ Cú(�) úw C(Gaut(B,Â)), g œ �
and relations such that, for every g, h œ �:

a(g) is unitary m œ Hom(a(g)¢ a(h), a(gh)) ÷ œ Hom(1, a(e))
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The C*-algebra Cú(�) úw C(Gaut(B,Â)) endowed with a suitable comultiplication
map is a compact quantum group. It is called the free wreath product of ‚� by
Gaut(B,Â) and will be denoted ‚� Óú Gaut(B,Â) or H+

(B,Â)

(‚�).

The first step in order to investigate this object is to revise the representation
theory of Gaut(B,Â), when dim(B) Ø 4 and Â is a ”-form. In particular, we will
present a new description of its spaces of intertwiners which makes use of noncross-
ing partitions instead of Temperley-Lieb diagrams. This alternative presentation
can be seen as a generalisation of the description introduced in [BS09] for S+

n ; in
our case the computation of the intertwiner associated to every partition is more
complicate because of the structure of Gaut(B,Â). By relying on this new graphical
interpretation, we can describe the intertwiners of ‚� Óú Gaut(B,Â), for dim(B) Ø 4
and Â ”-form, by using noncrossing partitions decorated with the elements of the
discrete group �. This result will allow to prove that the irreducible representa-
tions can be indexed by the elements of the monoid of the words written with the
elements of � and to compute the fusion rules, by generalising the argument used
by Lemeux in [Lem14].

The knowledge of the representation category will be crucial for the analysis of
the properties of the reduced and of the von Neumann algebras in the particular
case of a ”-trace Â. More precisely, it is proved that Cr(H+

(B,Â)

(‚�)) is simple and has
a unique trace, when dim(B) Ø 8. Moreover, if the group � is finite, we show that
the von Neumann algebra LŒ(H+

(B,Â)

(‚�)), dim(B) Ø 4 has the Haagerup property.
All these results are also presented in a more general form by dropping the ”

condition on the state Â, because, in this case, ‚� Óú Gaut(B,Â) can be decomposed
as the free product of smaller free wreath products ‚� Óú Gaut(Bi,Âi), where Âi is a
”i-form.

In the last part of the thesis, we will deal with the more general case of the free
wreath product of a compact quantum group by a quantum automorphism group.
First of all, we need to extend the definition given in the discrete case. We have

Definition. Let G be a compact quantum group and for each – œ Irr(G) let H– be
a space for the representation. Let B be a finite dimensional C*-algebra endowed
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with a faithful state Â. Let C(G) úw C(Gaut(B,Â)) be the universal unital C*-
algebra with generators a(–) œ L(B ¢H–)¢C(G) úw C(Gaut(B,Â)) and relations
such that:

• a(–) is unitary for every – œ Irr(G)

• ’–, —, “ œ Irr(G), ’S œ Hom(–¢ —, “)

m̂¢ S := (m¢ S) ¶ �
23

œ Hom(a(–)¢ a(—), a(“))

where �
23

: B ¢ H– ¢ B ¢ H— ≠æ B¢2 ¢ (H– ¢ H—), x1

¢ x
2

¢ x
3

¢ x
4

‘æ
x

1

¢ x
3

¢ x
2

¢ x
4

is the unitary map that exchanges the legs 2 and 3 in the
tensor product.

• ÷ œ Hom(1, a(1G)), where 1 is the unity of C(G) úw C(Gaut(B,Â)) and 1G

denotes the trivial representations of G

The C*-algebra C(G) úw C(Gaut(B,Â)) endowed with a suitable comultiplication
map is a compact quantum group. It is called the free wreath product of G by
Gaut(B,Â) and will be denoted G Óú Gaut(B,Â) or H+

(B,Â)

(G).

By relying on the same scheme as in the discrete case, we will show how to
describe some spaces of intertwiners by means of noncrossing partitions decorated
with morphisms of G. By generalizing a monoidal equivalence argument used in
[LT14], it is then possible to find the irreducible representations and the fusion
rules. In this case, the irreducible representations will be indexed by the elements
of the monoid of the words whose letters are the irreducible representations of
G. From the description of the intertwining spaces we will also deduce that the
monoidal equivalence is preserved by the free wreath product operation.

Theorem. Let G
1

and G
2

be two compact quantum group monoidally equivalent.
Let B,BÕ be two finite dimensional C*-algebras of dimension at least 4 endowed
with the ”-form Â and the ”Õ-form ÂÕ respectively. Suppose that the associated quan-
tum automorphism groups Gaut(B,Â) and Gaut(BÕ,ÂÕ) are monoidally equivalent.
Then

H+

(B,Â)

(G
1

) ƒmon H+

(BÕ,ÂÕ)(G2

)
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A stability result is also proved when looking at the fusion semiring.

Theorem. Let G
1

and G
2

be two compact quantum groups. Suppose that there
exists an isomorphism „ : R+(G

1

) ≠æ R+(G
2

) of their fusion semirings and that
„ restricted to Irr(G

1

) is a b�ection of Irr(G
1

) onto Irr(G
2

). Let B,BÕ be two finite
dimensional C*-algebras of dimension at least 4 endowed with the ”-form Â and
the ”Õ-form ÂÕ respectively. Then, the fusion semirings remain isomorphic when
passing to the free wreath product by a quantum automorphism group

R+(H+

(B,Â)

(G
1

)) ≥= R+(H+

(BÕ,ÂÕ)(G2

))

and the isomorphism is still a b�ection between the spaces of the irreducible repre-
sentations.

Finally, we will analyse some properties of the dual quantum group and of the
associated operator algebras. More in detail, by using some results from [DCFY14],
it will be proved that the dual of H+

(B,Â)

(G) has the central ACPAP if ‚G has the
central ACPAP; it follows that in this case the corresponding von Neumann algebra
has the Haagerup property. Similarly, a result from [VV07] allows us to show that
the exactness of ‚G implies the exactness of the dual of H+

(B,Â)

(G). Furthermore,
if Â is a ”-trace and dim(B) Ø 8, we can generalize an argument of Lemeux
[Lem14], based on a result of Brannan [Bra13] and on the Powers method adapted
by Banica [Ban97], in order to show the simplicity and uniqueness of the trace for
Cr(H+

(B,Â)

(G)).
As in the discrete case, all these properties as well as the representation theory

are extended to the case of a general faithful state Â thanks to a suitable free
product decomposition.

As a last result, we take into account the free wreath product of two quantum
automorphism groups. We know that, under some assumptions, the free wreath
product between the groups of quantum symmetries of two graphs is isomorphic
to the quantum symmetric group of a suitable graph. Therefore, our aim is to
find an analogous result in the framework of quantum automorphism groups. In
particular, we will show that the free wreath product Gaut(BÕ,ÂÕ) Óú Gaut(B,Â) is
isomorphic to a suitable quotient of Gaut(B ¢BÕ,Â ¢ ÂÕ).





Chapter 1

Preliminaries

1.1 Compact quantum groups

In this section we recall some basic notions about the theory of compact quan-
tum groups introduced by S. L. Woronowicz. The main references are the original
articles of Woronowicz [Wor87, Wor88, Wor91, Wor98]. The same results can be
found also in [Tim08, MVD98, NT13].
First of all, we fix the following notation.

Notation 1. The symbol ¢ will be used to denote the tensor product of Hilbert
spaces, the minimal tensor product of C*-algebras or the tensor product of von
Neumann algebras, depending on the context.

Definition 1.1.1. A Woronowicz compact quantum group G is a pair (C(G),�)
where C(G) is a unital C*-algebra and � : C(G) ≠æ C(G)¢C(G) a ú-homomorphism
such that

• (id¢�)� = (�¢ id)� (coassociativity)

• �(C(G))(C(G)¢ 1) = C(G) ¢ C(G) and �(C(G))(1¢ C(G)) = C(G) ¢
C(G) (cancellation law)

Woronowicz showed that this definition is equivalent to the following one.

23
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Definition 1.1.2. A Woronowicz compact quantum group G is a pair (C(G),�)
where C(G) is a unital C*-algebra and � : C(G) ≠æ C(G)¢C(G) a ú-homomorphism
together with a family of unitary matrices (u–)–œI , u– œMd–(C(G)) such that:

• the ú-subalgebra generated by the entries u–ij of the matrices u– is dense in
C(G)

• for all – œ I and 1 Æ i, j Æ d– we have �(u–ij) = qd–k=1

u–ik ¢ u–kj

• for all – œ I the transposed matrix (u–)t is invertible

In what follows, we will essentially make use of this second version of the
definition.

The first examples of compact quantum groups arise when considering a com-
pact group and a discrete group.

Example 1.1.3. Let G be a compact group and consider the algebra C(G) = {f :
G ≠æ C, f continuous} endowed with the comultiplication map � : C(G) ≠æ
C(G) ¢ C(G), �(f)(x, y) = f(xy) which is correctly defined because of the iso-
morphism C(G)¢C(G) ≥= C(G◊G). Then, (C(G),�) is a commutative compact
quantum group. Furthermore, thanks to the Gelfand theorem, all the commutative
compact quantum groups are of this type.

Notation 2. This example explains and justifies the notation G = (C(G),�) which
we will use to denote a compact quantum group. In the general case of a noncom-
mutative C*-algebra C(G), the Gelfand theorem is no longer valid and C(G) is
not isomorphic to the C*-algebra of the continuous functions on a compact space.
However, we keep the same notation.

Example 1.1.4. Let � be a discrete group and consider its reduced group C*-
algebra Cúr (�) which is the C*-algebra generated by the image of the left regular
representation ⁄ : � ≠æ L(¸2(�)), g ‘æ ⁄g of �. Let � : Cúr (�) ≠æ Cúr (�)¢ Cúr (�)
be the comultiplication such that �(⁄g) = ⁄g ¢ ⁄g. Then (Cúr (�),�) is a compact
quantum group. In particular, it is cocommutative, i.e. �op := ‡ ¶� = �, where
‡ is the flip operation. There is also the universal version of this compact quantum
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group. It is the completion of the group algebra C[�] with respect to the universal
norm and will be denoted ‚� = (Cú(�),�). Furthermore, every cocommutative
compact quantum groups is included between the reduced group C*-algebra and
the full group C*-algebra of a suitable discrete group.

One of the main properties of compact quantum groups is the existence of a
Haar state.

Theorem 1.1.5. Let (C(G),�) be a compact quantum group. Then, there exists
a unique state h œ C(G)ú such that

(h¢ idC(G)

)�(·) = h(·) and (idC(G)

¢ h)�(·) = h(·)

We will say that a compact quantum group is of Kac type if its Haar state is a
trace.

Remark 1.1. This property generalizes the existence of a left and right invariant
Haar measure µ for any compact group G which is expressed by the following
equality:

⁄

G
f(hg)dµ(g) =

⁄

G
f(g)dµ(g) =

⁄

G
f(gh)dµ(g)

for any f œ C(G) and h œ G.

We can now introduce the representation theory of compact quantum groups
which can be considered as a generalisation of the Peter-Weyl theory of the compact
groups.

Definition 1.1.6. A representation of the compact quantum group (C(G),�) on
a Hilbert space H is an element u œM(C(G)¢K(H)) such that

(�¢ id)(u) = u
(13)

u
(23)

(1.1)

where u
(13)

and u
(23)

are defined according to the leg numbering notation.
A representation is said to be unitary if the multiplier u is unitary as well. In
what follows, the Hilbert space of a given representation u will be denoted Hu.
If the representation is finite dimensional, then there exists n œ N such that u œ
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C(G)¢Mn(C). Therefore, in this case, the representation u can be interpreted as
a matrix of order n with coe�cients in C(G) and the condition 1.1 is equivalent to

�(uij) =
n
ÿ

k=1

uik ¢ ukj (1.2)

Remark 1.2. Relation 1.2 allows us to give an interpretation of Definition 1.1.2. The
generating family u– is indeed a family of finite dimensional unitary representations
because of the unitarity condition and the definition of �. The compact quantum
group is then defined by means of its own representation theory.

Remark 1.3. We observe that, in the case of a compact quantum group G =
(C(G),�) obtained from a concrete compact group G, the representations of G
just introduced are exactly the usual representations of the compact group G. Let
fi : G ≠æ L(H) be a strongly continuous unitary representation of the compact
group G on the Hilbert space H. This implies that fi is still a continuous map when
L(H) is considered with the strict operator topology and identified as M(K(H)),
so fi œ M(C(G) ¢ K(H)). Then, the elements in M(C(G) ¢ C(G) ¢ K(H)) ≥=
M(C(G◊G)¢K(H)) can be identified as strictly continuous functions on G◊G
with values on L(H). In particular, this implies that

fi
(13)

(p, q) = fi(p) and fi
(23)

(p, q) = fi(q)

Finally, by recalling the definition of comultiplication introduced for C(G) in Ex-
ample 1.1.3, we have (� ¢ idL(H)

)(fi)(p, q) = fi(pq). Therefore, in the compact
case, equation 1.1 is equivalent to the usual condition fi(pq) = fi(p)fi(q).

Definition 1.1.7. Let G be a compact quantum group and u a representation such
that C(G) is the closure of the linear span of the coe�cients of u. Then, the pair
(G, u) is called compact matrix quantum group (or compact matrix pseudogroup)
and we will refer to u as the fundamental representation of G.

Definition 1.1.8. Let u and v be two representations of a compact quantum group
G on the Hilbert spaces Hu and Hv. An intertwiner between u and v is a linear
map T œ L(Hu, Hv) such that

v(1¢ T ) = (1¢ T )u
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The space of intertwiners will be denoted Hom(u, v). A representation u is said to
be irreducible if Hom(u, u) = Cid.
Moreover, in the finite dimensional case, the two representations can be seen as
matrices u œ Mnu(C(G)) and v œ Mnv(C(G)). Therefore, an intertwiner is a map
T œMnv ,nu(C).

Definition 1.1.9. Two representations u and v are said to be equivalent and we
will write u ≥ v if there exists an invertible intertwiner T œ Hom(u, v). If T is also
unitary, they are said to be unitarily equivalent.

Notation 3. The element 1 ¢ 1 œ C(G) ¢ C is the trivial representation of the
compact quantum group G and it will be denoted 1G.

Notation 4. Let G be a compact quantum group. We will denote Rep(G) the set of
the classes of equivalence of the finite dimensional representations of G. Similarly,
Irr(G) will be the set of the irreducible representations of G, up to equivalence.

Now, we can define the fundamental operations between representations.

Definition 1.1.10. Let u and v be two representation of a compact quantum
group G = (C(G),�) on the Hilbert spaces Hu and Hv. We define the following
operations:

• the direct sum of u and v, denoted uüv, is the element ofM(C(G)¢K(Huü
Hv)) obtained as the diagonal sum of the two representations

• the tensor product of u and v is the element of M(C(G) ¢ K(Hu ¢ Hv))
defined by u¢ v := u

(12)

v
(13)

The following fundamental result of Woronowicz will allow us to deal only with
finite dimensional representations.

Theorem 1.1.11. Every irreducible representation of a compact quantum group is
finite dimensional and equivalent to a unitary one. Furthermore, every represen-
tation can be decomposed as a direct sum of irreducible representations.
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Remark 1.4. For every representation r œ Rep(G), there is a family of irreducible
representations –i œ Irr(G) such that:

r =
n

i

–i

If a representation – œ Irr(G) is in the decomposition of r œ Rep(G) we will
write – µ r. The existence of a subrepresentation – is equivalent to the existence
of an isometric intertwiner T œ Hom(–, r). The dimension of Hom(–, r) is the
multiplicity of – in r, i.e. the number of times that – is present in the sum.
The formulas describing the decomposition into irreducible representations of the
tensor product of two irreducible representations are called fusion rules.

Woronowicz showed that we can define the notion of conjugate representation
as follows.

Definition 1.1.12. Let u be a finite dimensional unitary representation on the
Hilbert space H. Let j : L(H) ≠æ L(H̄) be the application sending an operator in
its dual. Then uc = (id¢ j)(u≠1) œ C(G)¢ L(H̄) is a representation of G, called
the contragredient representation.
By choosing a basis of H, we can think to the representation u as a matrix (uij)ij.
In this case uc = (uúij)ij with respect to the dual basis.
The representation uc can be non unitary, but we know from Theorem 1.1.11 that
it is equivalent to a unitary one. The conjugate representation of u, denoted ū, is
the unique, up to equivalence, unitary version of uc.
Moreover, if u is a unitary irreducible representation, then ū is, up to equivalence,
the unique unitary irreducible representation such that u¢ ū and ū¢ u contain at
least a copy of the trivial representation 1G.

We have this characterisation of the property of being Kac.

Proposition 1.1.13. The contragredient representations of all the unitary repre-
sentations of a compact quantum group G are unitary if and only if G is of Kac
type.
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Definition 1.1.14. The fusion semiring of a compact quantum group G, denoted
(R+(G),ü,¢, ¯), is the set of equivalence classes of finite dimensional representa-
tions endowed with the operations of direct sum, tensor product and conjugate. We
will say that two fusion semirings R+

1

and R+

2

are isomorphic if there is a b�ection
„ : R+

1

≠æ R+

2

which is compatible with the three operations of the semirings.

Now, we recall a more specific result concerning the conjugate representation
which will be used in what follows.

Proposition 1.1.15. Let – œ Rep(G) and H– be a space for the representation,
let –̄ be the conjugate representation and H–̄ the associated Hilbert space. Let
S œ Hom(– ¢ –̄, 1G) and S Õ œ Hom(–̄ ¢ –, 1G) be two non-trivial morphisms.
Then, there exist a basis (e–i ) of H–, a basis (e–̄i ) of H–̄ and a family (⁄–i ) of
positive scalars such that, up to a scalar coe�cient,

S(›) =
n
ÿ

i=1

⁄i,–È›, e–i ¢ e–̄i Í and S Õ(÷) =
n
ÿ

i=1

⁄≠1

i,–È÷, e–̄i ¢ e–i Í

Proof. Let E œ Hom(1,– ¢ –̄) be a non zero invariant vector and view it as an
element in H– ¢ H–̄. Define JE : H– ≠æ H–̄ as the invertible antilinear appli-
cation which satisfies ÈJE›, ÷ÍH–̄ = ÈE, › ¢ ÷ÍH–¢H–̄ for all › œ H– and ÷ œ H–̄.
Let QE = JEJúE œ L(H–). We observe that the map E ‘æ JE is linear, therefore
Q⁄E = |⁄|2QE for all ⁄ œ C\{0} and for all E œ Hom(1,–¢ –̄)\{0}. Moreover, we
have that Tr(Q⁄E) = |⁄|2Tr(QE) and Tr(Q≠1

⁄E) = |⁄|2Tr(Q≠1

E ). It follows that by
replacing E by ⁄E, for ⁄ = 4

Ò

Tr(Q≠1

E )/Tr(QE), we have that Tr(QE) = Tr(Q≠1

E ).
Moreover, for this particular choice of E, we can find a unique non zero vector
Ē œ Hom(1, –̄¢ –) such that (Eú ¢ 1)(1¢ Ē) = 1. It follows that, J

¯E = J≠1

E and
Q

¯E = (JEJúE)≠1. In this proof, we will always suppose that the invariant vectors
E and Ē are normalized in this way (this means also that they are unique up to
S1) and we will use the following notations: E– = E, E–̄ = Ē, J– = JE, J–̄ = J

¯E

and Q– = QE. Then, we can assume ÎE–Î = ÎE–̄Î and J–̄ = J≠1

– .
Now, the maps S and S Õ, up to a scalar coe�cient, can be written as S(›) = È›, E–Í
for all › œ H–¢H–̄ and S Õ(÷) = È÷, E–̄Í for all ÷ œ H–̄¢H–. We observe that Q– is
a self-adjoint positive operator and, in light of it, it is diagonalizable. Let (e–i ) be
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an orthonormal basis of H– of eigenvectors and ⁄i,– the corresponding eigenvalues
such that Q–e–i = ⁄i,–e–i . Choose e–̄i := J–e–i as basis of H–̄.
Then, we have ÈE–, e–i ¢ e–̄j Í = ÈJ–e–i , e–̄j Í = ÈJ–e–i , J–e–j Í = ÈJú–J–e–i , e–j Í =
ÈQ–e–i , e–j Í = ⁄i,–Èe–i , e–j Í = ”ij⁄i,– so E– = qni=1

⁄i,–e–i ¢ e–̄i
It follows that S(›) = È›, E–Í = qni=1

⁄i,–È›, e–i ¢ e–̄i Í.
In order to prove the second relation, we observe that Q–̄ = Jú–̄J–̄ = (J–Jú–)≠1 =
J–Q≠1

– J
≠1

– and so Q–̄e–̄i = ⁄≠1

i,–e
–̄
i . Then, as in the previous case, we can prove that

S Õ(÷) = qni=1

⁄≠1

i,–È÷, e–̄i ¢ e–i Í.

Remark 1.5. A compact quantum group G is of Kac type if and only if the antilinear
map J– is anti-unitary for all – œ Irr(G). In particular, this means that Jú– = J≠1

– ,
therefore Q– = id and ⁄i,– = 1 for all i.

Now, we can give some important examples of the representations of a compact
quantum group. We start by describing the representation theory of (Cúr (�),�)
and we introduce the GNS construction afterwards.

Example 1.1.16. Let � be a discrete group and consider the compact quantum
group Cúr (�) introduced in Example 1.1.4. The generators ⁄g œ L(¸2(�)) are given
by ⁄g(”h) = ”gh, where the ”g œ ¸2(�) are defined by ”g(r) = ”g,r and form a basis
of ¸2(�). The ⁄g are all the irreducible representations of the compact quantum
group. Moreover, they are all of dimension one and the fusion rules are simply
given by ⁄g ¢ ⁄h = ⁄gh. This example will be important in what follows and the
representation ⁄g, g œ � will be denoted g for simplicity.

We are now ready to introduce the GNS construction associated to a compact
quantum group G = (C(G),�) with Haar state h. Consider the scalar product
Èx, yÍ := h(xúy) induced by h on C(G) and define L2(G) to be the completion of
C(G) with respect to the norm induced by this scalar product, possibly passing to
a suitable quotient to make the scalar product non-degenerate. Let � : C(G) ≠æ
L2(G) be the quotient map. Then

fih : C(G) ≠æ L(L2(G)), fih(x)�(y) = �(xy)
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is a representation of C(G) with cyclic vector ›
0

= �(1) and associated state h,
i.e we have h(x) = È›

0

, fih(x)›0Í for all x œ C(G). In what follows, the GNS
construction will be characterised by the triple (L2(G), fih, ›0).

Definition 1.1.17. The reduced C*-algebra associated to a compact quantum
group G is the image of C(G) through the GNS representation fih. We have

Cr(G) = fih(C(G))

It is easy to prove that (fih ¢ fih)� can be factorized through fih, therefore there
exists a map �r : Cr(G) ≠æ Cr(G)¢ Cr(G) such that

�r ¶ fih = (fih ¢ fih)�

It follows that the pair (Cr(G),�r) has a natural structure of compact quantum
group inherited from G. The Haar state hr is similarly defined by factorizing h
through fih; is satisfies the relation hr ¶ fir = h and is always faithful.

For a given compact quantum group G, we will denote Pol(G) the subspace
of C(G) generated by all the coe�cients (id ¢ Ê)(u), Ê œ L(Hu)ú of any finite
dimensional representation u on the Hilbert space Hu. It is naturally endowed
with a ú-algebra structure inherited from C(G), but it is possible to obtain a Hopf-
ú-algebra structure by defining the right coalgebra operations and an antipode. Let
u be a finite dimensional unitary representation; we know that u œ Mn(C(G)), so
its coe�cients can be chosen to be exactly the entries uij of the matrix. Thanks to
Theorem 1.1.11, it is enough to define the following maps only on these coe�cients.
The comultiplication is �|

Pol(G)

, i.e. the restriction of the map which gives the
compact quantum group structure, so in particular �(uij) = qnk=1

uik ¢ ukj. The
counit is Á(uij) = ”ij and the antipode is S(uij) = uúij.
We have the following two important results due to Woronowicz.

Theorem 1.1.18. The Hopf-*-algebra Pol(G) is dense in C(G).

Proposition 1.1.19. The compact quantum group G is of Kac type if and only if
the antipode satisfies the relation S2 = idC(G)

.
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A compact quantum group admits not only a reduced version, but also a max-
imal version.

Definition 1.1.20. Let G be a compact quantum group. Let C
max

(G) be the
envelopping C*-algebra of Pol(G). The comultiplication of G can be extended to a
comultiplication �

max

on C
max

(G) by universality. Then, the pair (C
max

(G),�
max

)
is a compact quantum group called the maximal version of G. A compact quantum
group such that its underlying C*-algebra is maximal is said to be full.

By making use of the GNS construction, we can also introduce the regular
representation of a compact quantum group G. Woronowicz proved that there
exists a unitary operator u on L2(G) ¢ L2(G) such that, for all a œ C(G) and
÷ œ L2(G), we have

uú(÷ ¢ fih(a)›0) = (fih ¢ fih)�(a)(÷ ¢ ›
0

)

The operator u is a representation of G and it is called left regular representation,
because, in the case of a compact group, u is the classic left regular representation.
Therefore, u is also an element of M(Cr(G)¢K(L2(G))) and, since it satisfies the
pentagonal equation

u
(12)

u
(13)

u
(23)

= u
(23)

u
(12)

it is a multiplicative unitary, as defined by Baaj and Skandalis in [BS93]. In the
same way, the right regular representation is the unitary operator v such that, for
all a œ C(G) and ÷ œ L2(G), we have

v(÷ ¢ fih(a)›0) = (fih ¢ fih)�op(a)(÷ ¢ ›0)

In this case as well v œ M(Cr(G) ¢K(L2(G))) and it is a multiplicative unitary.
We recall this important result of Woronowicz.

Proposition 1.1.21. Every irreducible unitary representation is contained in the
(left or right) regular representation with multiplicity equal to its dimension.

The multiplicative unitary of a compact quantum group contains all the infor-
mation necessary to reconstruct the group itself. By using the operator u, we have
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that

Cr(G) = < (id¢ Ê)u|Ê œ L(L2(G))ú > and �(a) = uú(1¢ a)u

where L(L2(G))ú denotes the predual which is the space of the normal linear func-
tionals on L(L2(G)). Furthermore, thanks to some particular properties of the
multiplicative unitary corresponding to the regular representation, we can define
a second quantum group which is the dual quantum group. It is not a compact
quantum group, but a discrete quantum group. We can think of the groups of this
type as being the dual of a compact one. It will be denoted ‚G = (C

0

( ‚G), ‚�), where

C
0

( ‚G) = < (Ê ¢ id)u|Ê œ L(L2(G))ú} >

and
‚� : C

0

( ‚G) ≠æM(C
0

( ‚G)¢ C
0

( ‚G)), ‚�(a) = ‡u(a¢ 1)uú‡

The map ‡ is the flip.
The dual quantum group ‚G of a compact quantum group G can also be defined by
using the irreducible representations of G. We have that

C
0

( ‚G) ≥=
n

–œIrr(G)

L(H–)

while the comultiplication ‚� is such that, for x œ L(H–), –, —, “ œ Irr(G) and
T œ Hom(–, — ¢ “), we have ‚�(x)T = Tx.
Finally, the von Neumann algebra of the dual quantum group ‚G is

lŒ( ‚G) ≥=
Ÿ

–œIrr(G)

L(H–)

Now, we recall some definitions and results of the category theory. They will be
immediately used in order to introduce the quantum version of the Tannaka-Krein
duality, presented by Woronowicz in [Wor88]. More details and precisions can be
found in [NT13].

Definition 1.1.22. Let C be a category. We will say that C is a C*-category if
the following conditions hold
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a) for all U, V,W œ Ob(C ) the class of morphisms Hom(U, V ) is a Banach space
and Hom(V,W ) ◊ Hom(U, V ) ≠æ Hom(U, V ), (R, S) ‘æ RS is a bilinear
map such that ÎRSÎ Æ ÎRÎ ÎSÎ

b) C is endowed with an antilinear contravariant functor ú : C ≠æ C which is
the identity on the objects (i.e. if T œ Hom(U, V ), then T ú œ Hom(V, U)) and
such that, for any T œ Hom(U, V ), T úú = T and ÎT úTÎ = ÎTÎ2. Moreover,
End(U) is a C*-algebra for any U œ Ob(C ) and T úT œ End(U) is a positive
element for any T œ Hom(U, V ).

We will say that C is a monoidal C*-category if, in addition, there is a bilinear
bifunctor¢ : C◊C ≠æ C , (U, V ) ‘æ U¢V , a unit object 1C and, for any U, V,W œ
Ob(C ), natural unitary isomorphisms –U,V,W : (U ¢ V ) ¢W ≠æ U ¢ (V ¢W ),
⁄U : 1C ¢ U ≠æ U and flU : U ¢ 1C ≠æ U such that

1. –U,V,W¢X ¶–U¢V,W,X = (idU¢–V,W,X)¶–U,V¢W,X ¶ (–U,V,W ¢ idX) in the space
Hom(((U ¢ V )¢W )¢X), U ¢ (V ¢ (W ¢X)))

2. flU ¢ idV = (idU ¢ ⁄V ) ¶ –U,1C ,V in Hom((U ¢ 1C )¢ V, U ¢ V )

3. ⁄
1C = fl

1C

4. (S ¢ T )ú = Sú ¢ T ú for any S, T morphisms

We will also suppose that the following conditions are verified:

5. for any U, V œ Ob(C ) there exist W œ Ob(C ) and two isometries u œ
Hom(U,W ), v œ Hom(V,W ) such that uuú + vvú = idW

6. for any U œ Ob(C ) and projection p œ End(U) there exist V œ Ob(C ) and
an isometry q œ Hom(V, U) such that qqú = p

7. End(1C ) = Cid
1C

8. the class Ob(C ) is a set
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A category is said to be strict if (U¢V )¢W = U¢(V¢W ), 1C¢U = U¢1C = U
and the isomorphisms –, ⁄ and fl are the identity morphisms. A useful result from
[ML98] is that every monoidal category can be strictified. Therefore, in what
follows, these categories will be supposed to be strict.

Definition 1.1.23. Let C be a monoidal C*-category and A µ Ob(C ). We say
that the subset A generates the category C if, for any V œ Ob(C ), there exists
a finite family of morphisms pi œ Hom(Ui, V ), where Ui is a tensor product of
elements of A, such that qi pipúi = idV

Definition 1.1.24. Let C and D be two monoidal C*-categories. A functor F :
C ≠æ D is called a tensor functor if it is linear on the morphisms and there exist
isomorphisms F

0

: 1D ≠æ F (1C ) and F
2

: F (U)¢ F (V ) ≠æ F (U ¢ V ) such that

1. F (–U,V,W ) ¶ F
2

¶ (F
2

¢ idF (W )

) = F
2

¶ (idF (U)

¢ F
2

) ¶ –F (U),F (V ),F (W )

in the
space Hom((F (U)¢ F (V ))¢ F (W ), F (U ¢ (V ¢W )))

2. F (⁄U) ¶ F
2

= ⁄F (U)

¶ (F
0

¢ idF (U)

) in Hom(F (1C )¢ F (U), F (U))

3. F (flU) ¶ F
2

= flF (U)

¶ (idF (U)

¢ F
0

) in Hom(F (U)¢ F (1C ), F (U))

A tensor functor is said to be unitary if F (T )ú = F (T ú) for any morphism T and
F

0

, F
2

are unitary.

The conditions 5 and 6 in Definition 1.1.22 tell us that a monoidal C*-category
is required to be complete with respect to direct sums and subobjects. Anyway,
a category C which verifies all the properties of a (strict) monoidal C*-category
with the exception of 5 and 6 can be completed to a category C̃ satisfying all
these properties. The category C̃ is the so called Karoubi envelope (or Cauchy
completion) of the additive completion. More details on the existence and on the
construction of C̃ can be found in [NT13]. We refer to [Bor94a, Bor94b] for a more
general analysis of the notion of completion of a category.

Definition 1.1.25. Let F,G be two tensor functors C ≠æ D . A natural isomor-
phism p : F ≠æ G is called monoidal if F

2

¶ p = (p ¢ p) ¶ G
2

in Hom(F (U) ¢
F (V ), G(U ¢ V )) and G

0

= F
0

¶ p in Hom(1D , G(1C )).
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Definition 1.1.26. We say that two monoidal C*-categories C and D are monoidally
equivalent if there exist two tensor functors F : C ≠æ D and G : D ≠æ C such
that FG ≥= id and GF ≥= id are monoidal isomorphisms. If F , G and the two
isomorphisms can be chosen to be unitary then C and D are unitarily monoidally
isomorphic.

Definition 1.1.27. A monoidal C*-category C is rigid if for any U œ Ob(C ) there
exist Ū œ Ob(C ) and two morphisms R œ Hom(1, Ū ¢ U), R̄ œ Hom(1, U ¢ Ū)
such that

(R̄ú ¢ idU)(idU ¢R) = idU (Rú ¢ id
¯U)(id

¯U ¢ R̄) = id
¯U

The object Ū is called the conjugate of U and the conditions satisfied by R, R̄ are
the conjugate equations.

The notion of conjugate is at the base of the following theorem, known as
Frobenius reciprocity.

Theorem 1.1.28. Let U be an object of a monoidal C*-category with conjugate Ū
and let R, R̄ be the morphisms solving the conjugate equations. Then, the linear
application Hom(U ¢V,W ) ≠æ Hom(V, Ū ¢W ) given by T ‘æ (id

¯U ¢T )(R¢ idV )
is an isomorphism. Similarly, we have Hom(V ¢ U,W ) ≥= Hom(V,W ¢ Ū)

Now, we introduce some examples which will be particularly important in what
follows. Let us fix a set of Hilbert spaces. Then, the category Hilbf , whose objects
are chosen to be the spaces of this set, can be endowed with a structure of rigid
monoidal C*-category. Another category which admits such a structure and which
will play a prominent role in this thesis is Rep(G), the category of the finite di-
mensional unitary representations of a compact quantum group G. We will always
suppose that the Hilbert spaces of the representations are objects of Hilbf .

Definition 1.1.29. A tensor functor F : C ≠æ Hilbf which is injective on the
morphisms and exact is called a fiber functor. A monoidal C*-category endowed
with a fiber functor is said to be concrete.



1.1 Compact quantum groups 37

An important example of fiber functor is the functor which associates to every
representation of Rep(G) its underlying Hilbert space.
We can now state the quantum version of the Tannaka-Krein duality, presented by
Woronowicz in [Wor88].

Theorem 1.1.30. Let C be a rigid concrete monoidal C*-category generated by
a family of objects (vi)iœI together with their conjugates. Then, there exists, up
to isomorphism, a unique full compact quantum group G = (C(G),�), whose C*-
algebra C(G) is generated by a family of finite dimensional unitary representations
ui, i œ I (with vi and ui indexed by the same I) and such that, if G

1

= (C(G
1

),�
1

)
is a full compact quantum group such that

• C(G
1

) is generated by the coe�cients of a family of finite dimensional unitary
representations wi, i œ I

• for all (i
1

, ..., ik) œ Ik and (j
1

, ..., jl) œ I l, we have

Hom(vi
1

¢ ...¢ vik , vj1 ¢ ...¢ vjl) ™ Hom(wi
1

¢ ...¢ wik , wj1 ¢ ...¢ wjl)

then, there exists a surjective ú-homomorphism „ : C(G) ≠æ C(G
1

) such that
(id¢ „)(ui) = wi.

To be precise, this theorem was proved by Woronowicz in the case of a compact
matrix quantum group, i.e when |I| = 1. However, the proof can be generalized
and the result is true also in this more general case.

This theorem is particularly important as it allows us to reconstruct a compact
quantum group, up to isomorphism, by starting from its representation category.

We say that two compact quantum groups are monoidally equivalent if their
representation categories are unitarily monoidally equivalent. In what follows, how-
ever, the monoidal equivalence results will not be proved by referring to the general
definition above, but to this more explicit equivalent definition (see [BDRV06]).

Definition 1.1.31. Let G
1

and G
2

be two compact quantum groups. They
are monoidally equivalent (written G

1

ƒmon G
2

) if there exists a b�ection „ :
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Irr(G
1

) ≠æ Irr(G
2

), „(1G
1

) = 1G
2

such that, for any k, l œ N and for any
–i, —j œ Irr(G), 1 Æ i Æ k, 1 Æ j Æ l, there is an isomorphism

„ : HomG
1

(–
1

¢...¢–k; —1

¢...¢—l) ≠æ HomG
2

(„(–
1

)¢...¢„(–k);„(—1

)¢...¢„(—l))

such that:

i) „(id) = id

ii) „(F ¢G) = „(F )¢ „(G)

iii) „(F ú) = „(F )ú

iv) „(FG) = „(F )„(G) for F,G composable morphisms

The proof of a monoidal equivalence between two compact quantum groups can
be simplified by making use of the following proposition.

Proposition 1.1.32. Let C ,D be two monoidal rigid C*-categories, possibly non
complete with respect to direct sums and subobjects. Let C̃ , D̃ be their completions.
If Â : C ≠æ D is a unital monoidal equivalence between the two categories C and
D , then there exists a unital monoidal equivalence Ẫ : C̃ ≠æ D̃ which extends Â.

This is a standard result in category theory, we refer to [Bor94a, Bor94b] for
the proof and for further details.

1.2 Free compact quantum groups

In this section, we present some important families of free compact quantum
groups. For the first examples, the basic idea is to build a quantum noncommuta-
tive version of the spaces of the continuous functions on the classic groups Un, On
and Sn. The C*-algebras C(Un), C(On) and C(Sn) are commutative so we want
to liberate them from this condition in order to find a noncommutative quantum
analogue.

We start by defining the free unitary quantum group, introduced by Wang and
Van Daele ([Wan93, VDW96]).
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Definition 1.2.1. Let F œ GLn(C), n Ø 2. Consider the following universal
unital C*-algebra

Au(F ) =< (vij)ij=1,...,n|v and F v̄F≠1 are unitaries >

The C*-algebra Au(F ) endowed with the comultiplication such that

�(vij) =
n
ÿ

k=1

vik ¢ vkj

is a compact quantum group. It is called free unitary quantum group and will be
denoted U+(F ). In particular, when F = In, Au(In) is exactly the noncommutative
version of C(Un). This can be considered as the basic free unitary quantum group
and will be denoted U+

n = (C(U+

n ),�).

The irreducible representations and the fusion rules of the free unitary groups
Au(F ), F œ GLn(C) were calculated by Banica in [Ban97].

Notation 5. Let NúN be the free product between two copies of the monoid N with a
and b as generators; denote by e the neutral element. Define an anti-multiplicative
operation of involution by ā = b, b̄ = a and ē = e.

Theorem 1.2.2. The equivalence classes of irreducible representations of U+(F ) =
(Au(F ),�) can be indexed by the elements of N ú N and will be denoted vx, x œ
N ú N. In particular we have that ve = 1U+

(F )

, va = v and vb = v̄. The adjoint
representation is given by vx = vx and the fusion rules are

vx ¢ vy =
ÿ

x=rt,y=¯ts

vrs

To Wang and van Daele is due also the notion of free orthogonal quantum group.

Definition 1.2.3. Let F œ GLn(C), n Ø 2 such that FF = cI, c œ R. Consider
the following universal unital C*-algebra

Ao(F ) =< (uij)ij=1,...,n|u = FūF≠1, u unitary >

The C*-algebra Ao(F ) endowed with the comultiplication such that

�(uij) =
n
ÿ

k=1

uik ¢ ukj



40 1. Preliminaries

is a compact quantum group. It is called free orthogonal quantum group and
will be denoted O+(F ). As in the unitary case, when F = In, Ao(In) is the
noncommutative version of C(On). This can be considered as the basic free unitary
quantum group and will be denoted O+

n = (C(O+

n ),�). Then, the C*-algebra
C(O+

n ) can be seen as being generated by the coe�cients, supposed self-adjoint, of
a unitary matrix.

Also in this case, the representation theory was calculated by Banica (see [Ban96]).

Theorem 1.2.4. The irreducible non-equivalent representations of the free orthog-
onal quantum group O+(F ) = (Ao(F ),�) can be indexed by the elements of N and
will be denoted uk, k œ N. In particular, we have that u

0

= 1O+

(F )

and u
1

= u.
All the irreducible representations are self-adjoint, i.e. ūk = uk for all k œ N. The
fusion rules are

uk ¢ ul = u|k≠l| ü u|k≠l|+2

ü ...uk+l≠2

ü uk+l =
min(k,l)
n

t=0

uk+l≠2t

Remark 1.6. We observe that these are the same fusion rules as SU(2). Moreover,

we can notice that, if F =
Q

a

0 1
≠1 0

R

b, we have Ao(F ) = C(SU(2)).

Banica in [Ban97] proved also the following proposition. Broadly speaking, he
showed that, U+(F ) can be seen as the free complexification of O+(F ), if FF̄ is a
multiple of the identity.

Proposition 1.2.5. Let F œ GLn(C), n Ø 2 such that FF̄ = cI, c œ R. Then
there is an embedding Cr(Au(F )) Òæ C(S1) úred Cr(Ao(F )) given by vij ‘æ zuij
where z is the generator of C(S1).

Wang in [Wan98] defined another important family of compact quantum groups
by introducing the notion of quantum automorphism group of a finite dimensional
C*-algebra. This notion can be seen as a generalisation of the definition of quantum
symmetric group. We begin by introducing this last one.

Definition 1.2.6. Let n œ Nú. Consider the following universal unital C*-algebra

C(S+

n ) =< (uij)i,j=1,...,n|uij = u2

ij = uúij ’i, j and
n
ÿ

i=1

uij
0

= 1 =
n
ÿ

j=1

ui
0

j ’i0, j0 >
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A matrix u, whose coe�cients are projections and sum up to 1 on the lines and on
the columns, is said to be magic. Then, C(S+

n ) is generated by the coe�cients of a
magic (unitary) matrix. By endowing C(S+

n ) with the comultiplication such that

�(uij) =
n
ÿ

k=1

uik ¢ ukj

we get the quantum symmetric group, denoted S+

n = (C(S+

n ),�).

Remark 1.7. If n = 1, 2, 3, C(S+

n ) is always commutative and equal to C(Sn), while,
if n Ø 4, the two C*-algebras are di�erent.

The representation theory of S+

n was computed by Banica in the more general
framework of the quantum automorphism groups (we will give a unique description
afterwards). We start with some definitions in order to explain the construction of
a quantum automorphism group. Since we will widely rely on this object in what
follows, we give more details than usual.

Definition 1.2.7. Let B be a finite dimensional C*-algebra endowed with a state
Â. Let (C(G),�) be a full compact quantum group (i.e. C(G) = C

max

(G)) and let
Á : C(G) ≠æ C be the counit of C(G). An action of G on B is a ú-homomorphism
– : B ≠æ B ¢ C(G) such that

(idB ¢�)– = (–¢ idC(G)

)– and (idB ¢ Á)– = idB (1.3)

Moreover, if
(Â ¢ idC(G)

)– = Â(·)1C(G)

the action is said to be Â-invariant.

In what follows, when considering an action on (B,Â), we will always assume
that the Â-invariance condition is satisfied. The next proposition shows a link
between the actions and the representations of a compact quantum group.

Proposition 1.2.8. By using the previous notations, let ={b
1

, ..., bn} be an or-
thonormal basis of the C*-algebra B. Denote m : B ¢ B ≠æ B its multiplication
map and ÷ : C ≠æ B its unity. Consider the linear map

– : B ≠æ B ¢ C(G)
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–(bi) =
n
ÿ

j=1

bj ¢ uji

It is natural to associate to this map – the matrix u œ Mn(C(G)) given by u =
(uij)ij. Then, the map – satisfies the relations 1.3 if and only if u is a representa-
tion of G.

The remaining properties which make – a Â-invariant action, i.e. the ú-
morphism conditions and the Â-invariance, can be similarly translated in relations
concerning u.

Proposition 1.2.9. Let u œ Mn(C(G)) be the matrix associated to a linear map
– satisfying equations 1.3. Then:

1. – is multiplicative if and only if m œ Hom(u¢2, u)

2. – is unital if and only if ÷ œ Hom(1, u)

3. – is Â-invariant if and only if ÷ œ Hom(1, uú)

Furthermore, if 1, 2 and 3 are satisfied we have:

4. – is involutive if and only if u is unitary.

This proposition explains and justifies the next definition.

Definition 1.2.10. Let B be a n-dimensional C*-algebra with multiplication m :
B ¢ B ≠æ B and unity ÷ : C ≠æ B. Let Â be a state on B. Let C(Gaut(B,Â))
be the universal unital C*-algebra generated by the coe�cients of an element u œ
L(B)¢ C(Gaut(B,Â)) which satisfies the following relations

• u is unitary

• m œ Hom(u¢2, u)

• ÷ œ Hom(1, u)
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The C*-algebra C(Gaut(B,Â)), endowed with the unique comultiplication such
that

(idB ¢�)(u) = u
(12)

u
(13)

is a compact quantum group. It is called quantum automorphism group of the
C*-algebra (B,Â) and denoted Gaut(B,Â).

The quantum automorphism group Gaut(B,Â) is the universal object in the
category of the compact quantum groups acting on B and leaving the state Â
invariant.

Remark 1.8. The choice of a state Â allows us to define a Hilbert space structure
on the C*-algebra B and to have a notion of adjoint. It follows that the condition
asking for u to be unitary depends on the state Â chosen.

Remark 1.9. By choosing an orthonormal basis for B, it is possible to transform
the three defining conditions of a quantum automorphism group in a set of rela-
tions between the coe�cients of u. The relations depend on the basis, but the
quantum automorphism group generated is of course independent from this choice
(see [Ban99]).

Remark 1.10. If we choose B = Cn endowed with the canonical trace tr, the associ-
ated quantum automorphism group Gaut(Cn, tr) is exactly the quantum symmetric
group S+

n . This observation, linked to Remark 1.7, implies that, if dim(B) Æ 3 the
quantum automorphism group would be C(Sn). Because of this, in what follows
we will always suppose dim(B) Ø 4, in order to get a non-degenerate situation.

As previously said, the investigation of the representation theory was done by
Banica in the case of particular states Â.

Definition 1.2.11. Let B be a n-dimensional C*-algebra as in definition 1.2.10
and ” > 0. A faithful state Â : B ≠æ C is a ”-form if the multiplication map of B
and its adjoint with respect to the inner product induced by Â (i.e. Èx, yÍ = Â(yúx))
satisfy mmú = ” · idB.
If such a Â is also a trace, it is called a tracial ”-form or a ”-trace.
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Remark 1.11. The convention which we adopted in the definition of a ”-form is
slightly di�erent from the standard one. Usually, the condition which a state Â has
to satisfy in order to be a ”-form is mmú = ”2 · idB. However, some computations
and some results of this thesis lead us to prefer the use of the condition without
the square.

Theorem 1.2.12. Let B be a n-dimensional C*-algebra, n Ø 4, endowed with
a ”-form Â. Then, the classes of equivalence of irreducible representations of
Gaut(B,Â) can be indexed by N and will be denoted uk, k œ N. In particular,
we have that u

0

= 1Gaut(B,Â)

and u
1

= u. All the irreducible representations are
self-adjoint, i.e. uk = uk for all k œ N. The fusion rules are

uk ¢ ul = u|k≠l| ü u|k≠l|+1

ü ...uk+l≠1

ü uk+l =
2 min(k,l)
n

t=0

uk+l≠t

We observe that these are the same fusion rules as SO(3) and that the fusion
semiring depends neither on the dimension or structure of B nor on the ” of Â.

The last family of compact quantum groups which we will describe has been
introduced by Bichon in [Bic04]. Its elements are the free wreath products of a
compact quantum group by a quantum permutation group.

Definition 1.2.13. Let G = (C(G),�C(G)

) be a compact quantum group and
n œ N, n Ø 4. Consider the C*-algebra free product C(G)ún and let ‹i : C(G) ≠æ
C(G)ún, i œ {1, ..., n} be the ú-homomorphism sending the elements of C(G) in its
i-th copy. Define C(G) úw C(S+

n ) to be the quotient of the free product C*-algebra
C(G)ún ú C(S+

n ) by the two-sided ideal generated by

‹k(a)uki ≠ uki‹k(a) for 1 Æ i, k Æ n and a œ C(G)

where u = (uij)ij is the magic matrix which generates C(S+

n ).
The C*-algebra C(G) úw C(S+

n ) is the free wreath product of G by S+

n . Endowed
with the unique comultiplication such that

�(uij) =
n
ÿ

k=1

uik ¢ ukj and �(‹i(a)) =
n
ÿ

k=1

(‹i ¢ ‹k(�C(G)

(a)))(uik ¢ 1)

it becomes a compact quantum group, denoted G Óú S+

n .
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The representation theory of these groups was first investigated by Banica and
Vergnioux in [BV09], when G = [Z/sZ or G = ‚Z. In this case, the free wreath
product is the so-called quantum reflection group. It admits also this alternative
construction.

Definition 1.2.14. Let s Ø 2, n œ Nú. Consider the universal unital C*-algebra

C(Hs+n ) =< u = (uij)i,j=1,...,n|u, ut are unitary,
uijuúij is a projection, usij = uijuúij = uúijuij >

endowed with the comultiplication such that �(uij) = qnk=1

uik ¢ ukj.
Then Hs+n = (C(Hs+n ),�) = [Z/sZ Óú S+

n is a quantum reflection group.
When s = 1, i.e. G = ‚Z, we consider the C*-algebra C(HŒ+

n ), obtained by
removing the condition usij = uijuúij in the previous case. The comultiplication
remains unchanged and we get the quantum reflection group HŒ+

n .

The results in [BV09] were first generalized by Lemeux in [Lem14], where he
considered the free wreath product of the dual of a discrete group � by S+

n . This
compact quantum group is denoted H+

n (‚�). A further generalisation was succes-
sively given by Lemeux and Tarrago in [LT14], where the general case of the free
wreath product of a compact matrix quantum group of Kac type by S+

n was anal-
ysed.
Now, we describe the representation theory in the more general case.

Definition 1.2.15. Let G be a compact matrix quantum group of Kac type and
consider the monoid M =< Irr(G) > composed by the words in the alphabet of
the irreducible representations of G. Define the following operations:

• involution (–
1

, ...,–k) = (–̄k, ..., –̄1

)

• concatenation (–
1

, ...,–k), (—1

, ..., —l) = (–
1

, ...,–k, —1

, ..., —l)

• fusion of two non-empty words: (–
1

, ...,–k).(—1

, ..., —l) is the multiset com-
posed by the words (–

1

, ...,–k≠1

, “, —
2

, ..., —l) for all the possible “ µ –k¢ —1

;
the multiplicity of each word is given by dim(Hom(“,–k ¢ —1

)), i.e. by the
multiplicity of the representation “ in the tensor product –k ¢ —1
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Theorem 1.2.16. The classes of irreducible non-equivalent representations can be
indexed by the elements of the monoid M and denoted rx, x œ M . The involution
is given by r̄x = rx̄ and the fusion rules are:

rx ¢ ry =
ÿ

x=u,t
y=¯t,v

ru,v ü
ÿ

x=u,t y=¯t,v
u ”=ÿ,v ”=ÿ
wœu.v

rw



Chapter 2

The free wreath product

In this chapter, we will take into account the compact quantum group obtained
as the free wreath product by a quantum automorphism group.

In the first section, we introduce some notations and recall some known results,
in the second we revise the basic theory of noncrossing partitions and add some
particular notion which will be crucial later. The third one is dedicated to the quan-
tum automorphism group; in particular we show how to describe its intertwining
spaces by using noncrossing partitions instead of Temperley-Lieb diagrams. This
new description is fundamental for the study of the free wreath product.

The remaining two sections are entirely devoted to the analysis of the free
wreath product and, in particular, the second can be seen as a generalization of
the first one. This inclusion reflects two successive phases of this project: first,
I defined and studied the free wreath product of a discrete group by a quantum
automorphism group and, only in a second time, I considered the more general
case obtained by replacing the discrete group by a compact quantum group.

2.1 Preliminaries

We recall that every finite dimensional C*-algebra B is isomorphic to a multi-
matrix C*-algebra so in what follows we will consider the decomposition

B =
c
n

–=1

Mn–(C)

47
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Let B = {(e–ij)i,j=1,...,n– ,– = 1, ..., c} be a basis of matrix units and define on B
the standard operations of:

• multiplication m : B ¢B ≠æ B, m(e–ij ¢ e
—
kl) = ”jk”–—e–il

• unity ÷ : C ≠æ B, ÷(1) = qc–=1

qn–
i=1

e–ii

Moreover, each finite dimensional C*-algebra B can be endowed with a Hilbert
space structure by considering the scalar product Èx, yÍÂ := Â(yúx) induced by a
faithful state Â on B.
Now, we recall some particularly important definitions and results about the struc-
ture of Â and the ”-form condition. A faithful state Â : B ≠æ C is a ”-form if
mmú = ” · idB, where ” > 0 and mú is the adjoint with respect to È, ÍÂ.
If Â : Mn(C) ≠æ C there exists Q œ Mn(C), Q > 0, Tr(Q) = 1 such that
Â = Tr(Q·). Moreover, we notice that every such Â is a ”-form, with ” = Tr(Q≠1).
More generally, if B = mc

–=1

Mn–(C), then every faithful state Â : B ≠æ C
is of the form Â = mc–=1

Tr(Q–·) for a suitable family Q– œ Mn–(C), Q– > 0,
q

–Tr(Q–) = 1. In this case, Â is a ”-form if Tr(Q≠1

– ) = ” for all –.

It is well known that every positive complex matrix is diagonalizable. It follows
that the matrices Q– are always similar to diagonal matrices with positive real
eigenvalues. In what follows, when considering the basis B of a finite dimensional
C*-algebra B endowed with a faithful state Â, we will always suppose to choose
the matrix units e–ij with respect to a basis which diagonalizes Q–. We will denote
Qi,– the eigenvalue in position (i, i) of the matrix Q– written with respect to this
fixed diagonal basis. We observe that Â(e–ij) = Tr(Q–e–ij) = ”ijQi,–.
The basis B is then always orthogonal with respect to the scalar product induced
by Â. By normalizing B we obtain the following orthonormal basis

BÕ = {b–ij|b–ij = Â(e–jj)≠
1

2 e–ij = Q≠
1

2

j,– e
–
ij, i, j = 1, ..., n–, – = 1, ..., c}

which will be widely used in this thesis.
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2.2 Noncrossing partitions

Noncrossing partitions have a crucial role in the description of the spaces of
intertwiners of quantum automorphism groups and free wreath products. Now, we
recall the basic definitions and define the three fundamental operations between
these diagrams.

Definition 2.2.1. Let k, l œ N. Let p = P
1

Û P
2

Û ... Û Pt be a partition of the
set Ik+l = {1, ..., k + l}. The subsets Pi, i = 1, ..., t are called the blocks of the
partition. The partition p is said to be a noncrossing partition if, for every possible
choice of elements r

1

< r
2

< r
3

< r
4

, rj œ Ik+l such that r
1

and r
3

belong to the
same block, then r

2

and r
4

belong to di�erent blocks. As we fixed k and l, such a
noncrossing partition p can be represented by a diagram with k upper points and
l lower points constructed as follows:

• consider two horizontal imaginary lines and draw k points on the upper one
and l points on the lower one

• number the k upper points from 1 to k and from the left to the right

• number the l lower points from k + 1 to k + l and from the right to the left

• connect to each other the points in a same block of the partition by drawing
strings in the part of the plane between the two imaginary lines

From the non crossing condition, it follows that the strings which connect points
of di�erent blocks can be drawn in such a way that they do not intersect. We
denote NC(k, l) the set of noncrossing partitions between k upper points and l
lower points. The total number of blocks of p œ NC(k, l) is denoted b(p).

Example 2.2.2. The following diagram represents a noncrossing partition p œ
NC(3, 4) with b(p) = 3.

•

• • •

• •

•
p =
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Definition 2.2.3. Let p œ NC(k, l), q œ NC(v, w). We define the following dia-
gram operations:

1. the tensor product p ¢ q is the diagram in NC(k + v, l + w) obtained by
horizontal concatenation of the diagrams p and q

2. if l = v it is possible to define the composition qp as the diagram in NC(k, w)
obtained by identifying the lower points of p with the upper points of q and
by removing all the blocks which have possibly appeared and which contain
neither one of the upper points of p nor one of the lower points of q; such
operation, when it is defined, is associative

3. the adjoint pú is the diagram in NC(l, k) obtained by reflecting the diagram
p with respect to an horizontal line between the two rows of points

Notation 6. When multiplying two noncrossing partitions p œ NC(k, l), q œ
NC(l, w) we get a unique partition qp œ NC(k, w) but, as observed, there can
be some blocks composed only of lower points of p/upper points of q which are
removed. We refer to them as central blocks and their number is denoted cb(p, q).
Furthermore, the vertical concatenation can produce some (closed) cycles which
will not appear in the final noncrossing partition either. Intuitively, they are the
rectangles which are obtained when two or more central points are connected both
in the upper and in the lower noncrossing partition (see example below). In a more
formal way, the number of cycles is denoted cy(p, q) and defined as

cy(p, q) = l + b(qp) + cb(p, q)≠ b(p)≠ b(q)

Example 2.2.4. In order to clarify the multiplication operation and the concepts
of block, central block as well as cycle, we can think of p œ NC(4, 17) and q œ
NC(17, 5) in the following example:

p=

q=

• • •

• • • • • • • • • • • •
• • • • • •

• • • • •

• • • • • •
• • • • •
• • • • •

•
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•

• • • • • •

• • •

qp= =

• • •

• • • • •

•

• • • • • •

• •

• •

•

• • • • •

We suddenly have b(p) = 6, b(q) = 7, b(qp) = 3 and cb(p, q) = 1.
Then, the number of cycles is cy(p, q) = 17 + 3 + 1≠ 6≠ 7 = 8.

In the following proposition we introduce a simple but useful relation concerning
the number of cycles obtained by multiplying three noncrossing partitions.

Proposition 2.2.5. Let p œ NC(k, l), r œ NC(l,m) and s œ NC(m, v). Then
the following relation holds:

cy(p, sr) = cy(p, r) + cy(rp, s)≠ cy(r, s) (2.1)

Proof. By making use of the – just introduced – definition of a cycle and of
the associativity of the composition, the relation (2.1) reduces to cb(p, sr) =
cb(p, r) + cb(rp, s) ≠ cb(r, s). In order to complete the proof, it is then enough
to observe that cb(p, sr) = cb(p, r) because the number of central blocks obtained
by concatenating p and sr does not depend on the noncrossing partition s; in the
same way, cb(rp, s) = cb(r, s).

2.2.1 Intertwining spaces

In this subsection, we recall first how noncrossing partitions can be used to de-
scribe the intertwining spaces of the quantum symmetric group S+

n = Gaut(Cn, tr)
and, later on, we introduce a particular kind of partitions, called Temperley-Lieb
diagrams.

We start by showing how to associate a linear map Tp œ L((Cn)¢k, (Cn)¢l) to
every p œ NC(k, l). All these results come from [BS09].

Definition 2.2.6. Let p œ NC(k, l) and suppose to decorate the k upper points
with the multi-index i = (i

1

, ..., ik); similarly, decorate the l lower points with the
multi-index j = (j

1

, ..., jl). Then, we define the following coe�cient:
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”p(i, j) =
Y

]

[

1 if every string of p joins equal indices
0 if at least a string of p joins di�erent indices

We can now describe the linear map

Definition 2.2.7. To every p œ NC(k, l) we associate the map Tp : (Cn)¢k ≠æ
(Cn)¢l:

Tp(ei
1

¢ ...¢ eik) =
ÿ

j

”p(i, j)(ej
1

¢ ...¢ ejl)

This association is well defined in light of this important compatibility result.

Proposition 2.2.8. Let p œ NC(l, k), q œ NC(v, w). We have:

1. Tp¢q = Tp ¢ Tq

2. T úp = Tpú

3. if k = v then Tqp = n≠cb(p,q)TqTp

From this the description of the intertwining spaces follows.

Theorem 2.2.9. Let n œ N, n Ø 4 and consider the quantum symmetric group S+

n

with fundamental representation u. Then for all k, l œ N

Hom(u¢k, u¢l) = span{Tp|p œ NC(k, l)}

Furthermore, the maps associated to distinct noncrossing partitions in NC(k, l)
are linearly independent.

We recall now the notion of Temperley-Lieb diagram.

Definition 2.2.10. Let k, l œ N. We will denote TL(2k, 2l) the set of noncrossing
partitions between 2k upper points and 2l lower points such that the cardinality
of each block is 2. All the notations introduced for noncrossing partitions can be
also used for these diagrams.

These diagrams have been used by Banica in [Ban02] to reconstruct the inter-
twining spaces of a quantum automorphism group. More precisely, he shows that
it is possible to reconstruct all the Temperley-Lieb diagrams by starting from two
basic diagrams. These diagrams can be thought as corresponding to the generating
morphisms m and ÷ of Definition 1.2.10.



2.3 The quantum automorphism group Gaut(B,Â) 53

2.3 The quantum automorphism group Gaut(B,Â)
In this section, we take into account the quantum automorphism group Gaut(B,Â).

Thanks to some remarks on the ”-form Â, we reduce the study of Gaut(B,Â) to
some particular cases. This will allow us to introduce a new description of its inter-
twining spaces which makes use of noncrossing partitions instead of Temperley-Lieb
diagrams and which is more explicit, i.e. to every noncrossing partition will cor-
respond a morphism. This di�erent approach will be widely used when studying
the representation theory of a free wreath product by a quantum automorphism
group.

An introduction to the construction and to the structure of the quantum auto-
morphism group can be found in the first chapter, here we only recall its definition
(see [Ban99, Wan98]).

Definition 2.3.1. Let B be a n-dimensional C*-algebra endowed with a state Â.
Fix a basis of B, orthonormal with respect to the scalar product induced by Â,
and identify B ≥= Cn as Hilbert spaces. Consider the following universal unital
C*-algebra:

C(Gaut(B,Â)) =< (uij)i,j=1,...,n|u = (uij) unitary,m œ Hom(u¢2, u), ÷ œ Hom(1, u) >

Then C(Gaut(B,Â)) endowed with the comultiplication � such that �(uij) =
qn
k=1

uik ¢ ukj is a compact quantum group. It is called quantum automorphism
group of the C*-algebra (B,Â) and denoted Gaut(B,Â).

As pointed out in Remark 1.9, the definition of Gaut(B,Â) does not depend
on the choice of the orthonormal basis of B, up to isomorphism. In this thesis,
however, the choice of a good basis of B is of fundamental importance in order
to prove many results and to simplify the computations. We will always use the
orthonormal basis BÕ introduced in Section 2.1.

2.3.1 New description of the intertwining spaces

The representation theory of Gaut(B,Â) is well known from [Ban02], but, in
order to generalize it to the free wreath product, we need a description of the
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intertwining spaces in terms of noncrossing partition. For this reason, the goal is
to generalise the construction recalled in Section 2.2.1 which is valid in the special
case of the quantum symmetric group Gaut(Cn, tr).
The idea is to assign a linear map to every noncrossing partition. In order to
define such a map we will make use of the following notation which generalizes the
classical one.

Notation 7. Consider a diagram p œ NC(k, l) and associate to every point an
element of the basis BÕ of B. Let (b–1

i
1

j
1

, ..., b–kikjk) be the ordered set of elements
associated to the upper points and (b—1

r
1

s
1

, ..., b—lrlsl) the elements associated to the
lower points. Let ij and – be the multi-index notation for the indices of these
matrices, in particular ij = ((i

1

, j
1

), ..., (ik, jk)) and – = (–
1

, ...,–k); in a similar
way, we define rs and —.
Denote bv, v = 1, ...,m the di�erent blocks of p and let bøv (b¿v) be the ordered
product of the matrix units associated to the upper (lower) points of the block bv.
Such a product is conventionally the identity matrix, if there are no upper (lower)
points in the block. Define

”–,—p (ij, rs) :=
m
Ÿ

v=1

Â((b¿v)úbøv) (2.2)

Example 2.3.2. Consider the following noncrossing partition p in which we asso-
ciated an element of the basis to every point.

•
b–1

i
1

j
1

•
b—1

r
1

s
1

•
b—2

r
2

s
2

•
b—3

r
3

s
3

•
b–2

i
2

j
2 •
b–3

i
3

j
3

•
b—4

r
4

s
4

In this case the coe�cient just introduced is

”–,—p (ij, rs) = Â((b—1

r
1

s
1

b—2

r
2

s
2

b—3

r
3

s
3

)úb–1

i
1

j
1

)Â(b–2

i
2

j
2

b–3

i
3

j
3

)Â((b—4

r
4

s
4

)ú)

Remark 2.1. It is possible to give a more concrete interpretation of the coe�cient
”–,—p (ij, rs). First of all, we notice that it can be non zero only if the indices –x, —y
are equal in the points of a same block. In this case, it will be e�ectively non zero
if the following condition is satisfied for each block. Let ((ic

1

, jc
1

), ..., (ict , jct)) and
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((rd
1

, sd
1

), ..., (rdw , sdw)) be the pairs of indices of the matrix units associated, for
a fixed block, to the upper points and to the lower points respectively. Then, the
second index of each pair must be equal to the first of the following one, assuming
that:

• the first index of the first of the upper points is equal to the first index of
the first of the lower points (ic

1

= rd
1

)

• the second index of the last of the upper points is equal to the second index
of the last of the lower points (jct = sdw)

Definition 2.3.3. We associate to every element p œ NC(k, l) the linear map
Tp : B¢k ≠æ B¢l which is defined by:

Tp(b–1

i
1

j
1

¢ ...¢ b–kikjk) =
ÿ

r,s,—

”–,—p (ij, rs)b—1

r
1

s
1

¢ ...¢ b—lrlsl

Example 2.3.4. The diagram p which is associated to the multiplication map m
(writing explicitly b–1

i
1

,j
1

, b–2

i
2

,j
2

on the upper points and b—1

r
1

,s
1

on the lower point) is:

•
b–1

i
1

j
1 •
b–2

i
2

j
2

•
b—1

r
1

s
1

Here, by applying the definition

”–,—p ((i
1

, j
1

, i
2

, j
2

), (r
1

, s
1

)) = Â((Â(e—1

s
1

s
1

)≠ 1

2 e—1

r
1

s
1

)úÂ(e–1

j
1

j
1

)≠ 1

2 e–1

i
1

j
1

Â(e–2

j
2

j
2

)≠ 1

2 e–2

i
2

j
2

)
= Â(e—1

s
1

s
1

)≠ 1

2Â(e–1

j
1

j
1

)≠ 1

2Â(e–2

j
2

j
2

)≠ 1

2Â(e—1

s
1

r
1

e–1

i
1

j
1

e–2

i
2

j
2

)
= ”—

1

,–
1

”–
1

,–
2

”r
1

,i
1

”j
1

,i
2

”s
1

,j
2

Â(e–1

j
1

j
1

)≠ 1

2

so the associated map Tp : B¢2 ≠æ B is given by

Tp(b–1

i
1

j
1

¢ b–2

i
2

j
2

) = ”–
1

,–
2

”j
1

,i
2

Â(e–1

j
1

j
1

)≠ 1

2 b–1

i
1

j
2

which is the multiplication m.
The diagram q associated to the unity map ÷ is:

ÿ
•
b—1

r
1

s
1
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By applying the definition we have

”—1

p (ÿ, (r
1

, s
1

)) = Â((Â(e—1

s
1

s
1

)≠ 1

2 e—1

r
1

,s
1

)ú) = ”r
1

,s
1

Â(e—1

s
1

s
1

) 1

2

therefore Tq : C ≠æ B is given by Tq(1) = qr
1

,—
1

Â(e—1

r
1

r
1

) 1

2 b—1

r
1

,r
1

which is exactly
the unity map ÷.
As usual, the diagram of the identity map (with two basis elements) is:

•
b–1

i
1

j
1

•
b—1

r
1

s
1

We can now state an important result of compatibility between the standard
operations of tensor product, composition and adjoint of linear maps and the same
operations between diagrams introduced in Definition 2.2.3 (see [BS09, Proposition
1.9] for the case of Cn with the canonical trace).

Proposition 2.3.5. Let p œ NC(l, k) and q œ NC(v, w). We have:

1. Tp¢q = Tp ¢ Tq

2. T úp = Tpú

3. if k = v then Tqp = ”≠cy(p,q)TqTp

Proof. Even if the core of the proof is essentially the same as [BS09], it is necessary
to pay much more attention to the computations in order to prove that this is the
correct way to associate a morphism to a noncrossing partition; in particular, it is
crucial that Â is a ”-form.
The relation 1 is clear because ”–,—p (ij, rs)”–Õ,—Õq (IJ,RS) = ”––

Õ,——Õ

p¢q (ijIJ, rsRS).
The relation 2 follows from ”–,—p (ij, rs) = ”—,–pú (rs, ij) which is true because we have
Â((b–ij)ú) = Â(b–ij) (we want to emphasize that the matrix associated to Â has real
eigenvalues).
The relation 3 is less obvious and it is not possible to prove it just by looking at the
definition of the coe�cients, because its validity strongly depends on the geometric
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structure of the noncrossing partitions too. In such a case, the relation to prove is

ÿ

—

n—
ÿ

r,s=1

”–,—p (ij, rs)”—,“q (rs, RS) = ”cy(p,q)”–,“qp (ij, RS) (2.3)

We remind that any noncrossing partition is obtained by using compositions, ten-
sor products and adjoints of the basic morphisms m, ÷ and idB. In order to prove
the composition formula between the maps associated to two noncrossing parti-
tions p and q, we can think of decomposing q in the composition of a sequence of
noncrossing partitions corresponding to elementary maps of type id¢uB ¢ f ¢ id¢vB
where u, v œ N and f = idB,m,mú, ÷, ÷ú.
If we suppose that relation 3 holds for the composition of a general noncrossing
partition p with this kind of maps and let q = qs...q2q1 be such a decomposition of
q, then we have

Tqp = Tqs...q
2

q
1

p

= ”≠cy(qs≠1

...q
1

p,qs)TqsTqs≠1

...q
1

p

= ”≠cy(qs≠1

...q
1

p,qs)≠cy(qs≠2

...q
1

p,qs≠1

)≠...≠cy(p,q
1

)TqsTqs≠1

...Tq
1

Tp

= ”≠cy(qs≠1

...q
1

p,qs)≠cy(qs≠2

...q
1

p,qs≠1

)≠...≠cy(p,q
1

)+cy(q
1

,q
2

)Tqs ...Tq
2

q
1

Tp

= ”≠cy(qs≠1

...q
1

p,qs)≠cy(qs≠2

...q
1

p,qs≠1

)≠...≠cy(p,q
1

)+cy(q
1

,q
2

)+...+cy(qs≠1

...q
1

,qs)Tqs...q
2

q
1

Tp

= ”≠cy(p,qs...q1)Tqs...q
1

Tp

= ”≠cy(p,q)TqTp

where the second to last equality follows by applying s times Proposition 2.2.5.
Now we only need to show relation (2.3) when composing the map associated to
p with an elementary map. Furthermore, we can consider that the noncrossing
partition p has only one block (or possibly two when f = m): it is possible to
reconstruct the multi-block case by using a tensor product argument or by gener-
alizing the following proof in an obvious way. Let us start now the computations
in the di�erent cases. Let p œ NC(l, k) be a one block noncrossing partition.
The first case we take into account is the composition of Tp with Tq = id¢kB . The
corresponding diagram is the following:
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•
b–1

i
1

,j
1 •
b–2

i
2

,j
2 •

b–lil,jl

•
b—1

r
1

,s
1

•
b—2

r
2

,s
2

•
b—krk,sk• • •

•
b“1

R
1

,S
1

•
b“2

R
2

,S
2

•
b“kRk,Sk

In this case relation (2.3) is satisfied, indeed
q

—
qn—
r,s=1

”–,—p (ij, rs)”—,“q (rs, RS) =
q

—
qn—
r,s=1

Â((b—1

r
1

,s
1

...b—krk,sk)
ú(b–1

i
1

,j
1

...b–lil,jl))
rk
t=1

Â((b“tRt,St)úb—trt,st) =
q

—
qn—
r,s=1

Â((b—1

r
1

,s
1

...b—krk,sk)
ú(b–1

i
1

,j
1

...b–lil,jl))
rk
t=1

”“t—t”Rtrt”Stst =
Â((b“1

R
1

,S
1

...b“kRk,Sk)
ú(b–1

i
1

,j
1

...b–lil,jl)) =
”–,“qp (ij, RS)

A second possible case is the composition of Tp with Tq = id¢uB ¢ ÷ú ¢ id¢vB . Here
there are two di�erent situations which deserve to be considered. If Tp = ÷, a
simple computation shows that ÷ú÷ = idC (because Â is unital) and the relation
(2.3) is satisfied. For all the other possible Tp the general diagram is the following:

•
b–1

i
1

,j
1 •
b–2

i
2

,j
2 •

b–lil,jl

•
b—1

r
1

,s
1

•
b—2

r
2

,s
2

•
b—zrz ,sz

•
b—krk,sk• • • •

•
b“1

R
1

,S
1

•
b“2

R
2

,S
2

•
b“kRk,Sk

With respect to the previous case in the lower noncrossing partition q, one of the
identity maps was replaced by ÷ú (in this case, with a little abuse of notation, we
removed b“zRz ,Sz but did not reassign the index z).
The relation (2.3) is verified because
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q

—
qn—
r,s=1

”–,—p (ij, rs)”—,“q (rs, RS) =
q

—
qn—
r,s=1

Â((b—1

r
1

,s
1

...b—krk,sk)
ú(b–1

i
1

,j
1

...b–lil,jl))Â(b—zrz ,sz)
rk
t=1,t”=z Â((b“tRt,St)úb—trt,st) =

q

—
qn—
r,s=1

Â((b—1

r
1

,s
1

...b—krk,sk)
ú(b–1

i
1

,j
1

...b–lil,jl))”rzszQ
1

2

sz ,—z

rk
t=1,t”=z(”“t—t”Rtrt”Stst) =

q

—
qn—
rz=1

Â((b“1

R
1

,S
1

...e—zrz ,sz ...b
“k
Rk,Sk

)ú(b–1

i
1

,j
1

...b–lil,jl)) =
Â((b“1

R
1

,S
1

...b“z≠1

Rz≠1

,Sz≠1

b“z+1

Rz+1

,Sz+1

...b“kRk,Sk)
ú(b–1

i
1

,j
1

...b–lil,jl)) =
”–,“qp (ij, RS)

The third case we analyse is the composition of Tp with Tq = id¢uB ¢ m ¢ id¢vB .
There are two di�erent situations which deserve to be considered: the two upper
points of m can be connected either to one block or to two di�erent blocks of the
noncrossing partition p. We observe that in the first sub-case a cycle appears and
the diagram is:

•
b–1

i
1

,j
1 •
b–2

i
2

,j
2 •

b–lil,jl

•
b—1

r
1

,s
1

•
b—2

r
2

,s
2

•
b—zrz ,sz

•
b—z+1

rz+1

,sz+1

•
b—krk,sk• • • • •

•
b“1

R
1

,S
1

•
b“2

R
2

,S
2

•
b“zRz ,Sz

•
b“kRk,Sk

As in the previous case one of the points of the lower line was removed and its
index (in this case z + 1) was not reassigned, for the sake of the clarity of the
notation. The relation (2.3) is still verified and the factor ” implied by the cycle
appears. We have
q

—
qn—
r,s=1

”–,—p (ij, rs)”—,“q (rs, RS) =
q

—
qn—
r,s=1

Â((b—1

r
1

,s
1

...b—krk,sk)
ú(b–1

i
1

,j
1

...b–lil,jl))Â((b“zRz ,Sz)úb—zrz ,szb—z+1

rz+1

,sz+1

)
rk
t=1,t”=z,z+1

Â((b“tRt,St)úb—trt,st) =
q

—
qn—
r,s=1

Â((b—1

r
1

,s
1

...b—krk,sk)
ú(b–1

i
1

,j
1

...b–lil,jl))”—z“z”—z+1

“z”rzRz”szrz+1

”sz+1

SzQ
≠ 1

2

sz ,—z
rk
t=1,t”=z,z+1

(”“t—t”Rtrt”Stst) =
qn“z
sz=1

Q≠1

sz ,“zÂ((b“1

R
1

,S
1

...e“zRz ,szb
“z
sz ,Szb

“z+2

Rz+2

,Sz+2

...b“kRk,Sk)
ú(b–1

i
1

,j
1

...b–lil,jl)) =
” · Â((b“1

R
1

,S
1

...b“zRz ,Szb
“z+2

Rz+2

,Sz+2

...b“kRk,Sk)
ú(b–1

i
1

,j
1

...b–lil,jl)) =
” · ”–,“qp (ij, RS)

The diagram of the sub-case with two blocks (with p œ NC(l+ lÕ, k + kÕ)) follows:
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Relation (2.3) is still verified:
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”––
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”––
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qp (iiÕjjÕ, RRÕSS Õ)
where the second to last equality is obtained by simplifying Q≠1

jl,“k with the value
given by the first Â and by inserting all the ” conditions and coe�cients of its
argument in the argument of the second Â. This is essentially due to the fact that
the index jl is in both arguments.
With similar computations, it is finally possible to prove that the formula still
holds in the remaining cases of ÷ (trivial case) and mú.

Remark 2.2. It is interesting to observe that, with respect to the classical compo-
sition formula of the maps associated to two noncrossing partitions, in this more
general case the correction factor depends on the number of cycles which appear
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instead of the number of central blocks (see Proposition 2.3.5(3) and compare with
Proposition 1.9(2) in [BS09]). This is due to a di�erent choice made during the
analysis of the two cases. In the classical case of the quantum symmetric group
S+

n = Gaut(Cn, tr), the ”-form considered is the usual trace tr which is not unital
but is a 1-form, while in our general case of Gaut(B,Â) the ”-form Â is always
unital (by definition of a state). Now the correction factor n≠cb(p,q) present in the
classical formula can actually be seen as tr(1)≠cb(p,q) so it disappears when dealing
with a unital ”-form while, on the other side, it is obvious that the dependency
from the cycles can be ignored if ” = 1. Of course, for a given ”-form, it is not
possible, in general, to find a normalization constant such that, in addition, ” = 1.

For some of the following results it is necessary that the scalar coe�cient which
can appear when composing depends on the number of central blocks as in the
standard case, so we need to state a modified version of Proposition 2.3.5. In this
case, we consider the quantum automorphism group Gaut(B, Ẫ) where Ẫ := ”Â
and Â is, as usual, a ”-form on B. It is clear that Gaut(B, Ẫ) = Gaut(B,Â). We
observe that Ẫ is a 1-form but it is in general not unital. In this case we have the
following compatibility result.

Proposition 2.3.6. Consider the quantum automorphism group Gaut(B, Ẫ) where
Ẫ is a 1-form (in general non-unital). Let p œ NC(l, k), q œ NC(v, w). We have:

1. Tp¢q = Tp ¢ Tq

2. T úp = Tpú

3. if k = v then Tqp = Ẫ(1)≠cb(p,q)TqTp

Proof. The proof is based exactly on the same techniques of the previous one and
the same analysis applies, therefore we will only point out the changes due to the
slightly di�erent hypothesis (Ẫ instead of Â). The first two relations are clear.
In order to prove the compatibility with respect to the multiplication, we observe
that, in this case, the relation to prove is

ÿ

—

n—
ÿ

r,s=1

”–,—p (ij, rs)”—,“q (rs, RS) = Ẫ(1)cb(p,q)”–,“qp (ij, RS) (2.4)



62 2. The free wreath product

As for the previous proposition, the proof can now be reduced to some elemen-
tary compositions: by making use of the same notations, we have that Tqp =
Ẫ(1)≠cb(p,q)TqTp. This follows by recalling that Proposition 2.2.5 is true also when
considering the number of closed blocks instead of the cycles (see the proof of the
proposition itself).
In order to verify that the relation 2.4 holds in the basic cases, we proceed exactly
as before. The only di�erences are in the computations where cycles or central
blocks are concerned. In the case of a basic composition where a cycle appears,
we observe that the relation 2.4 is verified because we have ” = 1. The only case
where a central block appears is that of Tp = ÷ and Tq = ÷ú. We have

ÿ
•
b—r,s

ÿ

•

q

—
qn—
r,s=1

”ÿ,—p (ÿ, rs)”—,ÿq (rs, ÿ) = q

—
qn—
r,s=1

Ẫ((b—rs)ú)Ẫ(b—rs)
= q

—
qn—
r=1

Qr,—”rs

= Ẫ(1)”ÿ,ÿqp (ÿ, ÿ)

where the ÿ symbol means that there are no indices.
Also in this case the new relation is verified.

Remark 2.3. Proposition 2.3.5 allows us to define the concrete monoidal C*-category
of noncrossing partitions. It will be denoted N C and:
- Ob(N C ) = N
- Hom(k, l) = span{Tp|p œ NC(k, l)}
It is endowed with a canonical fiber functor N C ≠æ Hilbf which sends every
n œ Ob(N C ) to the Hilbert space B¢n. Moreover, in this category every object is
equal to its conjugate, because for every k œ N the map associated to the following
diagram of NC(0, 2k) satisfies the conjugate condition (see Definition 1.1.27).

ÿ

• • ... • • ... • •
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Therefore N C is also rigid.
We now reformulate a result from [Ban99, Ban02, BS09] about the description

of the intertwining spaces of the category of representations of Gaut(B,Â). The
main di�erence is that the morphisms are associated to noncrossing partitions
instead of Temperley-Lieb diagrams, as in [Ban02], where the ”-form case is taken
into account.

Theorem 2.3.7. Let B be a n-dimensional C*-algebra, n Ø 4 and consider the
quantum automorphism group Gaut(B,Â) with fundamental representation u. Then
for all k, l œ N

Hom(u¢k, u¢l) = span{Tp|p œ NC(k, l)}

Furthermore, the maps associated to distinct noncrossing partitions in NC(k, l)
are linearly independent.

Proof. For the first inclusion (´) it is enough to observe that all noncrossing par-
titions can be obtained from the basic ones (diagrams of multiplication, unity and
identity) by using the operations of Definition 2.2.3 (this is true because the theo-
rem has already been proved for (B,Â) = (Cn, tr)). The inclusion follows because
the maps associated to these basic diagrams are intertwiners.
For the second inclusion (™) we apply the Tannaka-Krein duality to the con-
crete rigid monoidal C*-category N C . This implies that there exists a com-
pact quantum group G = (C(G),�) with fundamental representation v and such
that Hom(v¢k, v¢l) = span{Tp|p œ NC(k, l)}. Because of the universality of the
Tannaka-Krein construction, from the inclusion already proved it follows that there
is a surjective map „ : C(G) ≠æ Gaut(B,Â) such that (idB ¢ „)(v) = u. In
order to complete the proof we have to show that the map is an isomorphism.
This follows from the universality of the quantum automorphism group construc-
tion after observing that the matrix v is unitary and verifying the two conditions
m œ Hom(v¢2, v) and ÷ œ Hom(1, v) because m and ÷ correspond to two noncross-
ing partitions.
The independence of the maps follows from a dimension count, as observed in
[BS09], because the dimensions of the intertwining spaces computed in [Ban99] are
still true in this case (see also [Ban02]).
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We recall now a proposition attributed to Brannan in [DCFY14] in order to
generalize the representation theory to the case of a state Â:

Proposition 2.3.8. Let (B,Â) be a finite dimensional C*-algebra equipped with a
state. Let B = mki=1

Bi be the coarsest direct sum decomposition into C*-algebras
such that, for each i, the normalization Âi of Â|Bi is a ”i-form for a suitable ”i.
Then, Gaut(B,Â) is isomorphic to the free product ú̂ki=1

Gaut(Bi,Âi).

Remark 2.4. A suitable decomposition of B always exists. If B = mc–=1

Mn– is
the standard multimatrix decomposition, first we observe that the restriction of
Â to every summand (after normalization) is a ”-form for a suitable ”. Then the
summands Bi of the decomposition in Proposition 2.3.8 are given by the direct sum
of the Mn– with a common ”. The isomorphism is proved by using the universal
properties.

The representation theory of a free product has been described by Wang in
[Wan95] and it is completely determined by the representation theory of the factors.
In particular, the non trivial irreducible representations are the alternating tensor
product of the non trivial irreducible representations of the factors.

2.4 The free wreath product ‚� Óú Gaut(B,Â)
In this section, we define the free wreath product of a discrete group by a

quantum automorphism group. We will then describe its representation theory
and some properties of its reduced C*-algebra and von Neumann algebra.

Bichon in [Bic04] introduced the notion of free wreath product by a quantum
permutation group, so the first goal is to generalize his definition in order to con-
sider the free wreath product by a quantum automorphism group. Our definition is
not an immediate generalisation of his first definition (see Definition 1.2.13), where
the free wreath product is seen as a quotient of a particular free product, but we
generalise an alternative definition given in the case of the product of a discrete
group by S+

N . One of the great advantages of this approach is that it simplifies the
description of the intertwining spaces.
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2.4.1 Definition

First of all, we recall the equivalent definition given by Bichon in the particular
case of the free wreath product ‚� Óú S+

n .

Definition 2.4.1. Let � be a discrete group and n œ Nú. Let An(�) be the
universal unital C*-algebra generated by the coe�cients of the matrices a(g) =
(aij(g))i,j=1,...,n, g œ � with the following relations:

aij(g)aik(h) = ”jkaij(gh) aij(g)akj(h) = ”ikaij(gh)

n
ÿ

k=1

aik(e) = 1
n
ÿ

k=1

akj(e) = 1 aij(g)ú = aij(g≠1)

for all 1 Æ i, j, k Æ n and g œ �.
Then An(�) endowed with the comultiplication � : An(�) ≠æ An(�)¢An(�) such
that

�(aij(g)) =
n
ÿ

k=1

aik(g)¢ akj(g)

is a compact quantum group isomorphic to ‚� Óú S+

n .

Remark 2.5. Let m and ÷ be the multiplication and the unity map of Cn respec-
tively. The C*-algebra An(�) admits this equivalent presentation:

An(�) =< a(g) = (aij(g))i,j=1,...,n, g œ �|a(g) unitary,
m œ Hom(a(g)¢ a(h), a(gh)), ÷ œ Hom(1, a(e)) >

The three conditions required here (the unitarity and m, ÷ morphisms) correspond
to equations concerning the coe�cients of the matrices a(g). Let us check that
these equations are exactly the relations of the definition above. The basis of Cn

used in the following computations is (ei)i, the canonical one. We will denote eij
the matrix units of Mn(C) with respect to the canonical basis of Cn. We start
by considering the condition m œ Hom(a(g) ¢ a(h), a(gh)) which is equivalent to
(m ¢ 1)a(g)

(13)

a(h)
(23)

= a(gh)(m ¢ 1). Let us compute the left and right-hand
sides of the equality on the element ep ¢ eq ¢ 1 œ Cn ¢ Cn ¢ An(�). We have
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(m¢ 1)a(g)
(13)

a(h)
(23)

(ep ¢ eq ¢ 1) =
(m¢ 1)qi,j,k,l eij ¢ ekl ¢ aij(g)akl(h)(ep ¢ eq ¢ 1) =
(m¢ 1)qi,k ei ¢ ek ¢ aip(g)akq(h) =
q

i ei ¢ aip(g)aiq(h)
and
a(gh)(m¢ 1)(ep ¢ eq ¢ 1) = (qi,j eij ¢ aij(gh))(”pqep ¢ 1) = qi ei ¢ ”pqaip(gh)
Therefore, the condition on the multiplication is equivalent to the following fam-
ily of relations aij(g)aik(h) = ”jkaij(gh). The family of relations with the indices
inverted can be obtained from the condition mú œ Hom(a(gh), a(g) ¢ a(h)) with
a similar computation (the condition on mú holds because the a(g) are unitary
and can not be deduced uniquely from the condition on m). Let us compute
on the element 1C ¢ 1 the relations corresponding to ÷ œ Hom(1, a(e)) which
is equivalent to (÷ ¢ 1) = a(e)(÷ ¢ 1). We have ÷(1) ¢ 1 = q

i ei ¢ 1 and
(qi,j eij ¢ aij(e))(

q

k ek ¢ 1) = q

i ei ¢ (qk aik(e)). In this case we obtain the
relations qnk=1

aik(e) = 1 and, as before, the relations with the indices inverted are
equivalent to ÷ú œ Hom(a(e), 1). A simple computation proves that the condition
a(g) unitary is equivalent to qj aij(g)akj(g)ú = ”ik. By multiplying by ait(g≠1), we
have qj ait(g≠1)aij(g)akj(g)ú = ”ikait(g≠1). By using the relations obtained from
m we find ait(e)akt(g)ú = ”ikait(g≠1). Finally, by summing over i and by applying
the relations obtained from ÷ we get the desired relation akt(g)ú = akt(g≠1).

Then, the origin of the following, more general, definition is clear.

Definition 2.4.2. Let � be a discrete group and consider the quantum automor-
phism group Gaut(B,Â), where Â is a state on B. Let Cú(�)úwC(Gaut(B,Â)) be the
universal unital C*-algebra with generators a(g) œ L(B)¢Cú(�)úwC(Gaut(B,Â)),
g œ � and relations such that:

• a(g) is unitary for every g œ �

• m œ Hom(a(g)¢ a(h), a(gh)) for every g, h œ �

• ÷ œ Hom(1, a(e))
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Such a universal C*-algebra can be endowed with a compact quantum group
structure, but as far as this construction is concerned, we need to go deeper into
the generators a(g).

Notation 8. Consider the matrices a = (akl,—ij,–) and b = (bkl,—ij,–) with coe�cients in a
C*-algebra where 1 Æ –, — Æ c, 1 Æ i, j Æ n–, 1 Æ k, l Æ n—.
Their multiplication is defined by:

(ab)kl,—ij,– =
c
ÿ

“=1

n“
ÿ

r,s=1

akl,—rs,“b
rs,“
ij,–

The adjoint matrix is:
aú = ((aij,–kl,—)ú)

kl,—
ij,–

Remark 2.6. As the definition of the quantum automorphism group Gaut(B,Â)
does not depend on the choice of an orthonormal basis of B, also the definition of
the universal C*-algebra Cú(�)úwC(Gaut(B,Â)) does not depend on such a choice.
When it will be necessary to fix a basis of B, we will always use BÕ, as this will
allow us to consider as diagonal the matrices Q– associated to the state Â.

Remark 2.7. Let us fix BÕ as basis of the C*-algebra B. Then, the generators of the
C*-algebra Cú(�)úwC(Gaut(B,Â)) can be seen as matrices of type a(g) = (akl,—ij,–(g)),
1 Æ –, — Æ c, 1 Æ i, j Æ n–, 1 Æ k, l Æ n—, g œ �. By using the conventions
introduced in Notation 8, we can change the three conditions of Definition 2.4.2
into the following relations:

n“
ÿ

l=1

Q
≠ 1

2

l,“ a
rl,“
ik,–(g)a

ls,“
pj,—(h) = ”–—”kpQ

≠ 1

2

k,–a
rs,“
ij,– (gh)

n–
ÿ

k=1

Q
≠ 1

2

k,–a
rp,—
ik,–(g)aqs,“kj,–(h) = ”—“”pqQ

≠ 1

2

p,—a
rs,—
ij,– (gh)

c
ÿ

–=1

n–
ÿ

j=1

Q
1

2

j,–a
kl,—
jj,–(e) = ”klQ

1

2

l,—

c
ÿ

—=1

n—
ÿ

k=1

Q
1

2

k,—a
kk,—
ij,– (e) = ”ijQ

1

2

i,–

(akl,—ij,–(g))ú = (Ql,—
Qj,–

) 1

2 (Qk,—
Qi,–

)≠ 1

2alk,—ji,–(g≠1) (2.5)
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Proposition 2.4.3. There exists a unique ú-homomorphism

� : Cú(�) úw C(Gaut(B,Â)) ≠æ Cú(�) úw C(Gaut(B,Â))¢Cú(�) úw C(Gaut(B,Â))

such that, for any g œ �

(id¢�)(a(g)) = a(g)
(12)

a(g)
(13)

Moreover, � is a comultiplication and the pair (Cú(�) úw C(Gaut(B,Â)),�) is a
compact quantum group which is called the free wreath product of ‚� by Gaut(B,Â)
and will be denoted ‚� Óú Gaut(B,Â) or H+

(B,Â)

(‚�).

Proof. In order to prove the existence of �, we have to check that the images of
the generators a(g) satisfy the same relations. It is clear that a(g)

(12)

a(g)
(13)

is
unitary. When considering the condition on the multiplication, we have
(m¢ 1¢2)(a(g)

(12)

a(g)
(13)

¢ a(h)
(12)

a(h)
(23)

) =
(m¢ 1¢2)(a(g)

(13)

a(g)
(14)

a(h)
(23)

a(h)
(24)

) =
(m¢ 1¢2)(a(g)

(13)

a(h)
(23)

)(a(g)
(14)

a(h)
(24)

) =
(a(gh)

(12)

a(gh)
(13)

)(m¢ 1¢2)
The condition on the unity map is simply
a(e)

(12)

a(e)
(13)

(÷ ¢ 1¢2) = ÷ ¢ 1¢2

Therefore, by the universality of the free wreath product construction, the existence
of the map � is proved. The uniqueness is an immediate consequence of the fact
that the image of all the generators is fixed.
Now, we have to verify that the defining properties of a compact quantum group
are satisfied. In the preliminaries of the thesis we gave two equivalent definitions
and for this proof we will consider the second one. We observe that the matrices
a(g) are unitary and, by construction, their entries generate a dense ú-subalgebra of
Cú(�)úwC(Gaut(B,Â)). We just proved the existence of a suitable comultiplication
�. What is left is to prove that the transposed matrices (a(g))t are invertible. As
in Remark 2.13, the basis of B which will be used for the computations is BÕ. For
every (a(g))t the inverse is given by b(g) = ((Ql,—Qj,– )≠ 1

2 (Qk,—Qi,– ) 1

2alk,—ji,–(g≠1))kl,—ij,– . Indeed,
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we have that

(b(g)(a(g))t)kl,—rs,“ = qc
–=1

qn–
i,j=1

(Ql,—Qj,– )≠ 1

2 (Qk,—Qi,– ) 1

2alk,—ji,–(g≠1)a(g)rs,“ij,–
= ”—“”kr

qc
–=1

qn–
j=1

(Ql,—Qj,– )≠ 1

2als,—jj,–(e)
= ”—,“”kr”ls

so b(g)(a(g))t = Id. In the same way it is possible to prove that (a(g))tb(g) = Id.
It follows that a(g) is invertible and H+

(B,Â)

(‚�) is a compact quantum group.

2.4.2 Spaces of intertwiners

The first step now is to study the representation theory of H+

(B,Â)

(‚�) in the case
of a ”-form Â. Such a result will then be extended to the case of a state Â with a
result analogous to Proposition 2.3.8.

Notation 9. We denote NC
‚

�

(g
1

, ..., gk;h1

, ..., hl) the set of diagrams in NC(k, l)
where the k upper points are decorated by some gi œ � and the l lower points by
elements hj œ � such that, in every block, the product of the upper elements is
equal to the product of the lower elements (with the convention that, if the block
connects only upper or only lower points, the product must be the unit of �). For
example

•
g

1 •
g

2 •
g

3 •
g

4

•
h

1

is in NC
‚

�

(g
1

, g
2

, g
3

, g
4

;h
1

) if g
1

= e, g
2

g
3

g
4

= h
1

.

The operations between noncrossing partitions introduced in Definition 2.2.3
as well as the compatibility results of Propositions 2.3.5 and 2.3.6 naturally extend
to decorated diagrams.

Proposition 2.4.4. Let p œ NC
‚

�

(g
1

, ..., gk;h1

, ..., hl), q œ NC
‚

�

(gÕ
1

, ..., gÕv;hÕ1, ..., hÕw).
We have:

1. Tp¢q = Tp ¢ Tq where p ¢ q œ NC
‚

�

(g
1

, ..., gk, gÕ
1

, ..., gÕv;h1

, ..., hl, hÕ
1

, ..., hÕw) is
obtained by horizontal concatenation
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2. T úp = Tpú where pú œ NC
‚

�

(h
1

, ..., hl; g1, ..., gk) is obtained by reflecting p with
respect to an horizontal line between the two rows of points

3. if (h
1

, ..., hl) = (gÕ
1

, ..., gÕv) there are two possible cases:

a. if Â is a (unital) ”-form, then Tqp = ”≠cy(p,q)TqTp where
qp œ NC

‚

�

(g
1

, ..., gk;hÕ
1

, ..., hÕw) is obtained by vertical concatenation

b. if Ẫ is a (possibly non unital) 1-form ”Â, then Tqp = Ẫ(1)≠cb(p,q)TqTp
where qp œ NC

‚

�

(g
1

, ..., gk;hÕ
1

, ..., hÕw) is obtained by vertical concatena-
tion

Proof. The proof is essentially the same as Proposition 2.3.5, we have only to
observe that the operations between noncrossing partitions are well defined with
respect to the decoration of the diagrams, i.e. the operations of tensor product,
adjoint and composition always produce diagrams with an admissible decoration.

Example 2.4.5. The fundamental maps m, ÷ and idB can be represented by
making use of decorated noncrossing partitions. Their diagrams are the same
diagrams introduced in Example 2.3.4 with all the admissible decorations. In
particular, for all g, h œ �, the multiplication m, corresponds to the following
noncrossing partition of NC

‚

�

(g, h; gh)

•
g
•h

•
gh

while the unity ÷ and the identity idB correspond respectively to the following
decorated diagrams in NC

‚

�

(ÿ; e) and in NC
‚

�

(g; g)

ÿ
•
e

•
g

•
g

Theorem 2.4.6. Let � be a discrete group and (B,Â) be a finite dimensional
C*-algebra with a ”-form Â and dim(B) Ø 4. The spaces of intertwiners of ‚� Óú
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Gaut(B,Â) is spanned by the linear maps associated to some decorated noncrossing
partitions. In particular for any gi, hj œ � we have

Hom(
k
p

i=1

a(gi),
l
p

j=1

a(hj)) = span{Tp|p œ NC
‚

�

(g
1

, ..., gk;h1

, ..., hl)}

with the convention that, if k = 0, oki=1

a(gi) = 1H+

(B,Â)

(

‚

�)

and the space of the
noncrossing partitions is NC

‚

�

(ÿ;h
1

, ..., hl), i.e. it does not have upper points. Sim-
ilarly, if l = 0.

Proof. We prove this result by showing the double inclusion. The first inclusion
we take into account is the one of the right space in the left one (´). It is well
known that all noncrossing partitions can be built by using the operations of ten-
sor product, composition and adjoint on the noncrossing partitions corresponding
to the maps of multiplication, unity and identity. This fact can be easily gen-
eralized to the context of the noncrossing partitions decorated with the elements
of �. Let p œ NC

‚

�

(g
1

, ..., gk;h1

, ..., hl) be a decorated noncrossing partition. Its
decomposition in terms of the decorated noncrossing partitions corresponding to
m, ÷ and id is simply obtained by considering the usual decomposition in terms
of (non decorated) noncrossing partition and by observing that it is always pos-
sible to decorate all these partitions in an admissible way. Now, the linear maps
corresponding to the decorated noncrossing partitions of the decomposition are
intertwiners of H+

(B,Â)

(‚�) by definition of free wreath product. It follows that
Tp œ Hom(oki=1

a(gi),
ol
j=1

a(hj)).
For the second inclusion (™), we observe that, similarly to the proof of Theo-
rem 2.3.7, the noncrossing partitions decorated with the elements of � form a
concrete rigid monoidal C*-category N C

‚

�

, whose objects are the finite sequences
(g

1

, ..., gk), gi œ � and whose spaces of morphisms are Hom((g
1

, ..., gk), (h1

, ..., hl)) =
span{Tp|p œ NC

‚

�

(g
1

, ..., gk;h1

, ..., hl)}. Therefore, by the Tannaka-Krein duality,
there exists a compact quantum group G = (C(G),�), such that C(G) is gener-
ated by the coe�cients of a family of finite dimensional unitary representations
a(gi)Õ and Hom(oki=1

a(gi)Õ,
ol
j=1

a(hj)Õ) = span{Tp|p œ NC
‚

�

(g
1

, ..., gk;h1

, ..., hl)}.
Moreover, the inclusion showed in the first part of the proof, together with the
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universality of the Tannaka-Krein construction, imply that there is a surjective
map „ : C(G) ≠æ H+

(B,Â)

(‚�) such that (id ¢ „)(a(g)Õ) = a(g), for all g œ �. In
order to complete the proof we have to show that the map is an isomorphism. We
observe that the representations a(g)Õ are such that m œ Hom(a(g)Õ¢a(h)Õ, a(gh)Õ)
and ÷ œ Hom(1, a(e)Õ) because these maps correspond to well decorated noncross-
ing partitions. Therefore, because of the universality of the free wreath product
construction we have the inverse morphism and the proof is complete.

2.4.3 Irreducible representations and fusion rules

As in [Lem14, Cor 2.21] we can immediately deduce a result about basic rep-
resentations. The proof is identical.

Proposition 2.4.7. The basic representations a(g), g œ � of H+

(B,Â)

(‚�) are ir-
reducible and pairwise non-equivalent if g ”= e; the remaining representation is
a(e) = 1ü Ê(e), where Ê(e) is irreducible and non-equivalent to any a(g), g ”= e.

Definition 2.4.8. Let � be a discrete group and M =< � > be the monoid of
the words written by using the elements of � as letters. We define the following
operations:

- involution: (g
1

, ..., gk) = (g≠1

k , ..., g
≠1

1

)

- concatenation: (g
1

, ..., gk), (h1

, ..., hl) = (g
1

, ..., gk, h1

, ..., hl)

- fusion: (g
1

, ..., gk).(h1

, ..., hl) = (g
1

, ..., gkh1

, ..., hl)

We can now state the main theorem, generalizing Theorem 2.25 in [Lem14] to
the case ofH+

(B,Â)

(‚�). The proof is the same of [Lem14], because it only relies on the
fact that the intertwining spaces can be described by making use of noncrossing
partitions. As it was proved in Theorem 2.4.6 this is possible also in this more
general context.

Theorem 2.4.9. The irreducible representations of H+

(B,Â)

(‚�) are indexed by the
words of M and denoted Ê(x), x œ M with involution Ê̄(x) = Ê(x̄). In particular
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for g œ � we have Ê(g) = a(g)° ”g,e1.
The fusion rules are:

Ê(x)¢ Ê(y) =
ÿ

x=u,t
y=¯t,v

Ê(u, v)ü
ÿ

x=u,t
y=¯t,v
u ”=ÿ,v ”=ÿ

Ê(u.v)

As in [Lem14] the same representations can be indexed in a di�erent way.

Proposition 2.4.10. Let L be the monoid generated by an element a together with
a family of elements zg, g œ � which satisfy the same relations of the corresponding
elements of �. The neutral element of L is ze and it is identified with a0. Let S
be the submonoid of L generated by the elements azga, g œ �. Then, there is a
b�ection between S and the irreducible representations of H+

(B,Â)

(‚�).

The following proposition allows us to extend these results to the case of a state
Â.

Proposition 2.4.11. Let B = mc–=1

Mn–(C) be a finite dimensional C*-algebra
with a state Â = mc–=1

Tr(Q–·) on it. The state Â restricted to every summand
Mn–(C) (and normalized) is a ”-form with ” = Tr(Q≠1

– ). Consider the decom-
position B = mdi=1

Bi where every Bi is the direct sum of all the Mn–(C) such
that Tr(Q≠1

– ) is a constant value denoted ”i. Let Âi be the state on Bi obtained by
normalizing Â|Bi . Then

‚� Óú Gaut(B,Â) ≥= ú̂di=1

(‚� Óú Gaut(Bi,Âi))

is a ú-isomorphism which intertwines the comultiplications.

Proof. The proof consists in the explicit construction of the isomorphism. We fix
the notationsM = C(H+

(B,Â)

(‚�)) and Ni = C(H+

(Bi,Âi)
(‚�)) for 1 Æ i Æ d. Let a(g) œ

L(B)¢M , g œ � be the family of generators ofM and let a(g)i œ L(Bi)¢Ni, g œ �
be the family of generators of Ni, for 1 Æ i Æ d. Let m, ÷ be the multiplication and
the unity of B and let mi, ÷i be the multiplication and the unity of Bi. Moreover,
let ‹i : Bi ≠æ B be a family of isometries such that ‹i‹úi are pairwise orthogonal
projections and qi ‹i‹úi = idB. Define the element v(g) œ L(B)¢ údi=1

Ni by

v(g) =
ÿ

i

(‹i ¢ 1)a(g)i(‹úi ¢ 1)
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We claim that there exists a unital ú-homomorphism � : M ≠æ údi=1

Ni such that
(idB ¢�)a(g) = v(g). By the universality of the free wreath product construction
it is enough to verify that

1. v(g) is unitary

2. m œ Hom(v(g)¢ v(h), v(gh))

3. ÷ œ Hom(1, v(e))

Let us prove (1). Since the ‹i‹úi are pairwise orthogonal we have ‹úi ‹k = 0 if i ”= k
and ‹úi ‹i = idBi . It follows that
v(g)v(g)ú = q

i,k(‹i ¢ 1)a(g)i(‹úi ¢ 1)(‹k ¢ 1)a(g)úk(‹úk ¢ 1)
= q

i(‹i ¢ 1)a(g)ia(g)úi (‹úi ¢ 1)
= idB ¢ 1

Similarly, v(g)úv(g) = idB ¢ 1.
Let us prove (2). Observe that ‹újm(‹i¢‹k) = ”ik”ijm and that qi ‹imi(‹úi ¢‹úi ) =
m. Then
(m¢ 1)v(g)¢ v(h) =
(m¢ 1)qi,k(‹i ¢ ‹k ¢ 1)(a(g)i ¢ a(h)k)(‹úi ¢ ‹úk ¢ 1) =
q

i,k(m(‹i ¢ ‹k)¢ 1)(a(g)i ¢ a(h)k)(‹úi ¢ ‹úk ¢ 1) =
q

i,j,k(‹j ¢ 1)(‹újm(‹i ¢ ‹k)¢ 1)(a(g)i ¢ a(h)k)(‹úi ¢ ‹úk ¢ 1) =
q

i(‹i ¢ 1)(mi ¢ 1)(a(g)i ¢ a(h)i)(‹úi ¢ ‹úi ¢ 1) =
q

i(‹i ¢ 1)a(gh)i(mi(‹úi ¢ ‹úi )¢ 1) =
q

i(‹i ¢ 1)a(gh)i(‹úi ¢ 1)(qk ‹kmk(‹úk ¢ ‹úk)¢ 1) =
v(gh)(m¢ 1)

Let us prove (3). Observe that ‹úi ÷ = ÷i and qi ‹i÷i = ÷. We have
v(e)(÷ ¢ 1) = q

i(‹i ¢ 1)a(e)i(‹úi ¢ 1)(÷ ¢ 1)
= q

i(‹i ¢ 1)a(e)i(÷i ¢ 1)
= q

i(‹i ¢ 1)(÷i ¢ 1)
= ÷ ¢ 1

A simple verification allows us to show that this homomorphism intertwines the
comultiplications. This ends the first part of the proof.
In order to construct the inverse homomorphism we need some preliminary results.
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We claim that, for all i, ‹i‹úi œ Hom(a(g), a(g)). Consider the morphism m œ
Hom(a(g)¢ a(e), a(g)) and observe that

mmú =
d
ÿ

i=1

”i · ‹i‹úi œ Hom(a(g), a(g))

For a suitable constant K, we have

‹i‹
ú
i = K

d
Ÿ

k=1

k ”=i

(”kidB ≠
ÿ

l

”l‹l‹
ú
l )

This implies that ‹i‹úi œ Hom(a(g), a(g)).
Now, for all 1 Æ i Æ d define the element v(g)i œ L(Bi)¢M by

v(g)i = (‹úi ¢ 1)a(g)(‹i ¢ 1)

We claim that, for all i, there exists a unital ú-homomorphism �i : Ni ≠æM such
that (idBi¢�i)a(g)i = v(g)i. By the universality of the C*-algebra Ni it is enough
to verify that

1. v(g)i is unitary

2. mi œ Hom(v(g)i ¢ v(h)i, v(gh)i)

3. ÷i œ Hom(1, v(e)i)

Let us prove (1). We have
v(g)iv(g)úi = (‹úi ¢ 1)a(g)(‹i ¢ 1)(‹úi ¢ 1)a(g)ú(‹i ¢ 1)

= (‹úi ¢ 1)a(g)(‹i‹úi ¢ 1)a(g)ú(‹i ¢ 1)
= (‹úi ¢ 1)(‹i‹úi ¢ 1)a(g)a(g)ú(‹i ¢ 1)
= idBi ¢ 1

Similarly, v(g)úi v(g)i = idBi ¢ 1.
Let us prove (2). Recall thatmi = ‹úim(‹i¢‹i), then ‹imi(‹úi¢‹úi ) = (‹i‹úi )m(‹i‹úi¢
‹i‹úi ) œ Hom(a(g)i ¢ a(h)i, a(gh)i). Hence
(mi ¢ 1)v(g)i ¢ v(h)i =
(mi ¢ 1)(‹úi ¢ ‹úi ¢ 1)(a(g)¢ a(h))(‹i ¢ ‹i ¢ 1) =
(mi(‹úi ¢ ‹úi )¢ 1)(a(g)¢ a(h))(‹i ¢ ‹i ¢ 1) =
(‹úi ¢ 1)(‹imi(‹úi ¢ ‹úi )¢ 1)(a(g)¢ a(h))(‹i ¢ ‹i ¢ 1) =
(‹úi ¢ 1)a(gh)(‹imi(‹úi ¢ ‹úi )¢ 1)(‹i ¢ ‹i ¢ 1) =
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(‹úi ¢ 1)a(gh)(‹imi(‹úi ‹i ¢ ‹úi ‹i)¢ 1) =
(‹úi ¢ 1)a(gh)(‹i ¢ 1)(mi ¢ 1) =
v(gh)i(mi ¢ 1)

Let us prove (3). Observe that ‹i÷i = (‹i‹úi )÷ œ Hom(1, a(e)). Then
v(e)i(÷i ¢ 1) = (‹úi ¢ 1)a(e)(‹i ¢ 1)(÷i ¢ 1)

= (‹úi ‹i ¢ 1)(÷i ¢ 1)
= (÷i ¢ 1)

This completes the proof of the existence of the morphism �i : Ni ≠æ M , for all
i. Then, because of the universality of the free product construction, there exists
a unital ú-homomorphism � : údi=1

Ni ≠æM such that (idBi ¢�)a(g)i = v(g)i and
it is easy to verify that this morphism intertwines the comultiplications. Finally, a
simple computation allows us to prove that � and � are inverse to each other and
this ends the proof.

The non trivial irreducible representations of ‚� Óú Gaut(B,Â) are then given by
an alternating tensor product of non trivial irreducible representations of the fac-
tors ‚� Óú Gaut(Bi,Âi) (see [Wan95]).

We conclude this section with a remark about the spectral measure on a sub-
algebra of Cú(�) úw C(Gaut(B,Â)) (Â ”-form) which will be useful in the following
section.

Remark 2.8. The description of the intertwining spaces in term of noncrossing
partitions allows us to give a result concerning the Haar measure of some particular
elements. It is well known that the character of the fundamental representation of
the quantum symmetric group follows the free Poisson law (see e.g. [BC07]). We
observe that a similar result is still valid in the case of the free wreath product
H+

(B,Â)

(‚�), when Â is a ”-form. Let ‰(a(e)) := (Tr¢id)(a(e)) be the character of the
representation a(e). It follows immediately from relation (2.5) that ‰(a(e)) is self-
adjoint. Therefore, in order to find its spectral measure, it is enough to compute
the moments h(‰(a(e))k). By denoting pk the orthogonal projection onto the fixed
points space Hom(1, a(e)¢k) and thanks to some classic results of Woronowicz
(see [Wor88]) we have h(‰(a(e))k) = h((Tr¢ id)(a(e))k) = Tr((id¢ h)(a(e)¢k)) =
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Tr(pk) = dim(Hom(1, a(e)¢k)) = #NC(0, k) = Ck where Ck are the Catalan
numbers. They are exactly the moments of the free Poisson law of parameter 1 so
this is the spectral measure of ‰(a(e)).

2.4.4 Algebraic and analytic properties

Simplicity and uniqueness of the trace for the reduced algebra

We prove that, under certain conditions, the reduced C*-algebra Cr(H+

(B,Â)

(‚�))
is simple and has a unique trace.

Remark 2.9. The free product decomposition given in Proposition 2.4.11 implies
that the Haar measure of ‚� Óú Gaut(B,Â) is the free product of the Haar measures
of its factors, by using a well known result of Wang (see [Wan95]). It follows that
the decomposition is still true at the level of the reduced C* and von Neumann
algebras so the following isomorphisms holds:

(Cr(‚� Óú Gaut(B,Â)), h) ≥= ú
red

k

i=1

(Cr(‚� Óú Gaut(Bi,Âi)), hi)

(LŒ(‚� Óú Gaut(B,Â)), h) ≥= úki=1

(LŒ(‚� Óú Gaut(Bi,Âi)), hi)

where h and hi are the Haar states on the respective C*-algebras.

Proposition 2.4.12. Let (B,Â) be a finite dimensional C*-algebra endowed with a
trace Â. Let � be a discrete group, |�| Ø 4. Consider the free product decomposition
of the reduced C*-algebra Cr(H+

(B,Â)

(‚�)) given in Remark 2.9. If there is either only
one factor (i.e. Â is a ”-trace) and dim(B) Ø 8 or there are two or more factors
with dim(Bi) Ø 4 for all i, then Cr(H+

(B,Â)

(‚�)) is simple with a unique trace given
by the free product of the Haar measures.

Proof. If there are two or more factors, the result follows from a proposition of
Avitzour (see [Avi82, Section 3]). The latter states that, given two C*-algebras
A and AÕ endowed with tracial Haar states hA and hAÕ , the reduced free product
C*-algebra A ú

red

AÕ is simple with unique trace if there exist two unitary elements
of Ker(hA) which are orthogonal with respect to the scalar product induced by hA
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and a unitary element in Ker(hAÕ). In order to show that, in our case, these ele-
ments exist we use a result from [DHR97, Proposition 4.1 (i)] according to which,
if a C*-algebra A endowed with a normalized trace · admits an abelian sub-C*-
algebra F so that the spectral measure corresponding to ·|F is di�use, then there
is a unitary element u œ A such that ·(un) = 0 for each n œ Z, n ”= 0. We aim to
apply this proposition to every factor of the decomposition in order to satisfy the
Avitzour’s condition. But this follows from Remark 2.8 where we observed that,
when considering the generator a(e) of an indecomposable free wreath product
‚� Óú Gaut(B,Â), Â ”-trace, the spectral measure associated to its character ‰(a(e))
is the free Poisson law of parameter 1 which is di�use. The simplicity and unique-
ness of the trace in the multifactor case are then proved.
In the second case, when Â is a ”-trace and there is not a free product decomposi-
tion, the proof is a generalisation of the proof presented in [Lem14, Theorem 3.5]
and relies on the simplicity of Cr(Gaut(B,Â)) for a ”-trace proved in [Bra13]. We
will give only a sketch of the arguments.
Let E be the subset of the monoidM containing only words composed by using the
neutral element of �, denoted e. Let A be the subspace of Cr(H+

(B,Â)

(‚�)) generated
by the coe�cients of the irreducible representations associated to the words of E
and AÕ its closure in Cr(H+

(B,Â)

(‚�)). We have that AÕ ≥= Cr(Gaut(B,Â)). Further-
more, there exists a unique conditional expectation P : Cr(H+

(B,Â)

(‚�)) ≠æ AÕ such
that h = hAÕ ¶ P , where h is the Haar state of Cr(H+

(B,Â)

(‚�)) and hAÕ := h|AÕ .
Now, let I ™ Cr(H+

(B,Â)

(‚�)) be an ideal; we want to prove that it is trivial or equal
to Cr(H+

(B,Â)

(‚�)). Consider the ideal P (I) ™ AÕ; the simplicity of Cr(Gaut(B,Â))
implies that P (I) is either trivial or AÕ.
If P (I) = {0} then I ™ ker(P ) ™ Ker(h). Suppose x œ I, then xúx œ I, so
h(xúx) = 0. h being faithful we get immediately x = 0 so in this case I = {0}.
If P (I) = AÕ the proof is more complicate, but the core idea is that, by making
use of the Powers method, adapted by Banica in [Ban97], if x œ I it is possible to
build a sequence (bi)i in Cr(H+

(B,Â)

(‚�)) such that Î1≠qi bixbúi Îr < 1. This implies
that the element qi bixbúi œ I and it is invertible.
In order to prove the uniqueness of the trace we introduce the space D generated
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by the coe�cients of the irreducible representations associated to words in Ec, i.e.
which contain at least a letter di�erent from e. Let DÕ be its closure and notice
that Cr(H+

(B,Â)

(‚�)) = AÕ üDÕ. The first step of the proof consists in showing that
any faithful normal trace on Cr(H+

(B,Â)

(‚�)) coincide with the Haar state when re-
stricted to DÕ. The uniqueness of the trace on Cr(Gaut(B,Â)) ≥= AÕ implies the
equality also when restricting to AÕ so the proof is finished.

Haagerup property

The aim of this paragraph is to prove that, under some hypothesis, the von
Neumann algebra LŒ(H+

(B,Â)

(‚�)) has the Haagerup property. Firstly, we recall the
basic definition.

Definition 2.4.13. Let G be a compact quantum group with Haar state h. We say
that LŒ(G) has the Haagerup property if there exists a net {(Ïx)}xœA of normal
unital completely positive h-preserving maps on LŒ(G) such that the extension to
L2(G) is a compact operator and converges pointwise to the identity in L2-norm.

Now, we can prove the following result.

Proposition 2.4.14. Let � be a finite group and (B,Â) a finite dimensional C*-
algebra (dim(B) Ø 4) with a ”-trace. Then LŒ(H+

(B,Â)

(‚�)) has the Haagerup ap-
proximation property.

This proposition extends Theorem 3.12 in [Lem14] and the proof uses the same
arguments.
In what follows fi : C(H+

(B,Â)

(‚�)) ≠æ C(Gaut(B,Â)) will be the canonical map
given by (id¢ fi)(a(g)) = u ’g œ �, where u is the fundamental representation of
Gaut(B,Â). Consider the Gelfand isomorphism

Ê : Cú(‰–,– œ Irr(Gaut(B,Â))) ≠æ C(Spec(‰))

where ‰ is the character of the fundamental representation of Gaut(B,Â) (i.e.
‰ = (Tr ¢ id)(u)) and ‰– is the character of the irreducible representation –.
From [Bra13, Proposition 4.8] we know that that [0, dim(B)] ™ Spec(‰) µ R.
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We recall that the irreducible representations of a compact quantum group
allow to decompose the Hilbert space associated with the GNS construction. In
our case, for S = Irr(H+

(B,Â)

(‚�)), we have L2(H+

(B,Â)

(‚�)) = m–œS L2

–(H+

(B,Â)

(‚�)),
where L2

–(H+

(B,Â)

(‚�)) is the space generated by the coe�cients of the irreducible
representation –. Let P– : L2(H+

(B,Â)

(‚�)) ≠æ L2

–(H+

(B,Â)

(‚�)) be the orthogonal
projection on the summand.
Finally, we can state this crucial lemma from [Bra13].

Lemma 2.4.15. Let I = [0, 4] if dim(B) = 4 and I = [4, dim(B)] if dim(B) Ø 5.
The net (TÏx)xœI is made up of normal, unital, completely positive h-preserving
maps on LŒ(H+

(B,Â)

(‚�)) defined by:

TÏx =
ÿ

–œS

Ïx(‰–̄)
d–
P–

where Ïx = evx¶Ê¶fi is a state on Cú(‰–|– œ Irr(H+

(B,Â)

(‚�))), evx is the evaluation
function in the point x and d– is the dimension of the irreducible representation –.

Proof of Proposition 2.4.14. In order to prove that LŒ(H+

(B,Â)

(‚�)) has the Haagrup
approximation property, it is necessary to show that the L2 extension of the net
(TÏx)xœI is a compact operator which converges pointwise to the identity.
Being each TÏx the direct sum of projections over finite dimensional spaces, the
proof of the compactness reduces to show that the net of the coe�cients vanishes
at infinity, i.e. that Ïx(‰–̄)

d–
æ 0 as – æ Œ. This can be proved exactly as in

[Lem15, Propositions 3.3 and 3.4] in the case of „Zs Óú S+

N because the proof only
relies on the fusion rules which are the same.
Following [Lem15, Proposition 3.5], we also have the pointwise convergence.

Since the Haagerup property is stable under tracial free products (see [Boc93,
Proposition 3.9]) and by using Remark 2.9 we have the generalisation to the case
of a trace.

Proposition 2.4.16. Let (B,Â) be a finite dimensional C*-algebra endowed with
a trace Â and � be a finite group. Consider the free product decomposition of the
reduced von Neumann algebra LŒ(‚� ÓúGaut(B,Â)) given in Remark 2.9. If for each
i, dim(Bi) Ø 4 then LŒ(H+

(B,Â)

(‚�)) has the Haagerup property.
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2.5 The free wreath product G Óú Gaut(B,Â)
This section is a generalisation of the results obtained in the previous one. As

previously, our first aim is to correctly define the object that we will take into
account: the free wreath product of a compact quantum group by a quantum
automorphism group. The definition is based on the same idea already used in the
case of a discrete group, but it needs to be adapted to this new context. In this
more general situation too, we will describe the spaces of intertwiners by means of
specially decorated noncrossing partitions. This will be fundamental in order to
prove a monoidal equivalence result, from which the fusion rules and some other
properties will be deduced.

2.5.1 Definition

Definition 2.5.1. Let G be a compact quantum group and, for each – œ Irr(G),
let H– be a space for the representation. Consider the quantum automorphism
group Gaut(B,Â), where Â is a faithful state on a finite dimensional C*-algebra
B. Let C(G) úw C(Gaut(B,Â)) be the universal unital C*-algebra with generators
a(–) œ L(B ¢H–)¢ C(G) úw C(Gaut(B,Â)) and relations such that:

• a(–) is unitary for any – œ Irr(G)

• ’–, —, “ œ Irr(G), ’S œ Hom(–¢ —, “)

m̂¢ S := (m¢ S) ¶ �
23

œ Hom(a(–)¢ a(—), a(“))

where �
23

: B ¢ H– ¢ B ¢ H— ≠æ B¢2 ¢ (H– ¢ H—), x1

¢ x
2

¢ x
3

¢ x
4

‘æ
x

1

¢ x
3

¢ x
2

¢ x
4

is the unitary map that exchanges the legs 2 and 3 in the
tensor product.

• ÷ œ Hom(1, a(1G)), where 1 is the unity of C(G) úw C(Gaut(B,Â)) and 1G

denote the trivial representations of G

Remark 2.10. In order to seem more coherent with the second relation, the third
one can be rewritten as ÷ ¢ S œ Hom(1, a(1G)), where S = id

1G : C ≠æ C. In this
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case, there is no need to reorder the spaces with a map of type �. Moreover, being
the map S a morphism of one dimensional representations, it is clear that the two
conditions are exactly the same. This remark also shows the link to the definition
given in the simpler case G = ‚�. In this case, all the irreducible representations of
‚� are one dimensional; therefore, the morphisms S can be ignored, since they are
scalar multiples of idC. Then, this second definition is a generalization of the first
one.

Remark 2.11. The definition of C(G) úw C(Gaut(B,Â)) does not depend on the
choice of the basis of B = mcT=1

MnT (C) and of the spaces H–, dim(H–) = d– for
every – œ Irr(G). We observe also that, by choosing a basis of B and of the H–,
the generators a(–) of this C*-algebra can be seen as matrices with 8 indices. More
precisely

a(–) =
c
ÿ

R,Z=1

nR
ÿ

i,j=1

nZ
ÿ

k,l=1

d–
ÿ

p,q=1

ekl,Zij,R ¢ epq ¢ a
kl,Z
ij,R (–pq) (2.6)

where the ekl,Zij,R and the epq are the matrix units with respect to the chosen basis.

In order to correctly deal with these objects during the following computations,
we fix this notation.

Notation 10. Consider the matrices a = (akl,Zij,R,pq) and b = (bkl,Zij,R,pq) with coe�cients
in a C*-algebra where 1 Æ R, Z Æ c, 1 Æ i, j Æ nR, 1 Æ k, l Æ nZ , 1 Æ p, q Æ N .
Their multiplication is defined by:

(ab)kl,Zij,R,pq =
c
ÿ

T=1

nT
ÿ

r,s=1

N
ÿ

t=1

akl,Zrs,T,ptb
rs,T
ij,R,tq

The transpose matrix is:
at = (aij,Rkl,Z,qp)

kl,Z
ij,R,pq

The adjoint matrix is:
aú = ((aij,Rkl,Z,qp)ú)

kl,Z
ij,R,pq

Proposition 2.5.2. There exists a unique ú-homomorphism

� : C(G) úw C(Gaut(B,Â)) ≠æ C(G) úw C(Gaut(B,Â))¢ C(G) úw C(Gaut(B,Â))
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such that, for any – œ Irr(G)

(id¢�)(a(–)) = a(–)
(12)

a(–)
(13)

Moreover, � is a comultiplication of C(G)úwC(Gaut(B,Â)) and the pair (C(G)úw
C(Gaut(B,Â)),�) is a compact quantum group. It is called the free wreath product
of G by Gaut(B,Â) and will be denoted G Óú Gaut(B,Â) or H+

(B,Â)

(G).

Proof. In order to verify that � exists, we have to check that the images of the
generators satisfy the same relations of the generators. For this verification, we
need to think to the a(–) as three legs objects, as in formula (2.6). Therefore, the
condition on � can be rewritten as (id ¢�)(a(–)) = a(–)

(123)

a(–)
(124)

. It is easy
to check that a(–)

(123)

a(–)
(124)

is unitary. Now, we verify the relations concerning
the multiplication map. We have
(m¢ S ¢ 1¢2)�

23

(a(–)
(123)

a(–)
(124)

¢ a(—)
(123)

a(—)
(124)

) =
(m¢ S ¢ 1¢2)�

23

(a(–)
(125)

a(–)
(126)

a(—)
(345)

a(—)
(346)

) =
(m¢ S ¢ 1¢2)�

23

(a(–)
(125)

a(—)
(345)

)(a(–)
(126)

a(—)
(346)

) =
(a(“)

(123)

a(“)
(124)

)(m¢ S ¢ 1¢2)�
23

When considering the condition on the unity map we have trivially that
a(1G)

(12)

a(1G)
(13)

(÷ ¢ 1¢2) = ÷ ¢ 1¢2

Then, the ú-homomorphism � exists by the universality of the free wreath prod-
uct construction. The uniqueness is an immediate consequence of the fact that the
image of all the generators is fixed.
The proof of the compact quantum group structure consists in verifying the condi-
tions of Definition 1.1.2. It is clear that the matrices a(–) are unitary and we just
proved that the comultiplication � exists. What is left is to show that the a(–)t

are invertible. Let us fix BÕ as basis of B. Let H–, dim(H–) = d– be the space
of the representation – œ Irr(G) with the basis introduced in Proposition 1.1.15.
Then, as explained in Remark 2.11, the generators of the free wreath product can
be seen as matrices. The inverse of the transposed of a(–) = (akl,Zij,R (–pr)), is

b(–) = ((Qk,ZQj,R
Qi,RQl,Z

) 1

2

⁄p,–
⁄r,–
alk,Zji,R(–̄pr))kl,Zij,R,pr

where the coe�cients of type Qi,R are the eigenvalues of the matrices associated to
the state Â and the coe�cients of type ⁄p,– were introduced in Proposition 1.1.15
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to describe a morphism S œ Hom(–¢ –̄, 1G) (such a morphism exists by definition
of conjugate representation).
In order to show that this is really the inverse, we need to compute explicitly some
of the relations introduced in the definition of the free wreath product. Let us
start by considering the condition m̂¢ S œ Hom(a(–) ¢ a(–̄), a(1G)). According
to Proposition 1.1.15, the morphism S can be assumed to be of the form S(›) =
qd–
i=1

⁄i,–È›, e–i ¢ e–̄i Í, where (e–i )i and (e–̄i )i denote the well chosen basis of H–
and H–̄ respectively. Then, the condition asking for m̂¢ S to be a morphism is
equivalent to the following family of relations

nT
ÿ

l=1

d–
ÿ

r=1

⁄r,–Q
≠ 1

2

l,T a
dl,T
ik,R(–rt)als,Tpj,Z(–̄rq) = ”RZ”kp”tqQ

≠ 1

2

k,R⁄t,–a
ds,T
ij,R (1G) (2.7)

while the condition ÷ú œ Hom(a(1G), 1) corresponds to
c
ÿ

Z=1

nZ
ÿ

k=1

Q
1

2

k,Za
kk,Z
ij,R (1G) = ”ijQ

1

2

i,R (2.8)

It follows that b(–) is a right inverse, indeed

(a(–)tb(–))kl,Zts,T,pq = qc
R=1

qnR
i,j=1

qd–
r=1

(Qs,TQi,RQj,RQt,T
) 1

2

⁄r,–
⁄q,–
aij,Rkl,Z(–rp)aji,Rst,T (–̄rq)

= qc
R=1

qnR
i=1

”ZT ”ls”pqa
ii,R
kt,T (1G)(Qi,RQt,T ) 1

2

= ”ZT ”ls”pq”kt

where the second equality is given by 2.7 and the third by 2.8.
Similarly, the explicit relations corresponding to m̂ú ¢ Sú œ Hom(a(1G), a(–) ¢
a(–̄)), where Sú(1) = qd–i=1

⁄i,–e–i ¢e–̄i and to ÷ œ Hom(1, a(1G)) allow to show that
b(–) is also a left inverse, therefore it is the inverse. The compact quantum group
structure is proved.

Remark 2.12. The definition of the compact quantum group H+

(B,Â)

(G) implies
that every irreducible representation can be obtained as a sub-representation of a
suitable tensor product of the basic representations a(–), – œ Irr(G).

Remark 2.13. It is possible to transform the three conditions of Definition 2.5.1
into explicit relations between the coe�cients of the a(–). Of course, this implies
the choice of a basis for all the vector spaces concerned, i.e. the C*-algebra B and
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the spacesH–, dim(H–) = d–. As in the proof of Proposition 2.5.2, we choose BÕ as
basis of B and, for each H–,– œ Irr(G), we use the basis constructed in Proposition
1.1.15. Even if the definition of the free wreath product does not depend on the
choice of these basis, the following relations do. Therefore, a di�erent choice, in
general, leads to di�erent relations. In the proof of Proposition 2.5.2 we already
calculated the relations corresponding to m̂¢ S œ Hom(a(–)¢ a(–̄), a(1G)). This
simplified formula, fundamental for specific computations, does not have a direct
analogue in the general case, because it relies on the possibility to diagonalise the
morphism S.
In order to give a general formulation we need to introduce some notations. Let
–, —, “ œ Irr(G), let S œ Hom(– ¢ —, “) and denote the corresponding matrix
by S = (Ïrsz )z,(r,s) where 1 Æ z Æ d“, 1 Æ r Æ d–, 1 Æ s Æ d—. Similarly, let
S Õ œ Hom(“,– ¢ —) and denote its matrix by S Õ = (Ïzrs)(r,s),z where 1 Æ z Æ d“,
1 Æ r Æ d–, 1 Æ s Æ d—.
The family of relations corresponding to m̂¢ S œ Hom(a(–)¢ a(—), a(“)) is then

nZ
ÿ

t=1

d–
ÿ

r=1

d—
ÿ

s=1

Ïrsz Q
≠ 1

2

t,Z a
kt,Z
iv,R(–rp)atl,Zwj,T (—sq) = ”RT ”vwQ

≠ 1

2

v,R

d“
ÿ

y=1

Ïpqy a
kl,Z
ij,R (“zy) (2.9)

while the relations associated to m̂ú ¢ S Õ œ Hom(a(“), a(–)¢ a(—)) are
nR
ÿ

v=1

d–
ÿ

p=1

d—
ÿ

q=1

ÏypqQ
≠ 1

2

v,Ra
kt,Z
iv,R(–rp)awl,Tvj,R(—sq) = ”ZT ”twQ

≠ 1

2

t,Z

d“
ÿ

z=1

Ïzrsa
kl,Z
ij,R (“zy) (2.10)

The relations corresponding to the intertwiners ÷ œ Hom(1H+

(B,Â)

(G)

, a(1G)) and
÷ú œ Hom(a(1G), 1H+

(B,Â)

(G)

) are respectively
c
ÿ

R=1

nR
ÿ

i=1

Q
1

2

i,Ra
kl,Z
ii,R (1G) = ”klQ

1

2

k,Z

c
ÿ

Z=1

nZ
ÿ

k=1

Q
1

2

k,Za
kk,Z
ij,R (1G) = ”ijQ

1

2

i,R (2.11)

The relations concerning the adjoints are not explicitly stated in the definition of
the free wreath product (they can be easily deduced). We decided to include them
in this list because, in this way, the last condition which asks for the a(–), – œ
Irr(G) to be unitary, can simply be replaced by the following definition of the
involution operation

akl,Zij,R (–pr)ú = (Qi,RQl,Z
Qk,ZQj,R

) 1

2

⁄r,–
⁄p,–
alk,Zji,R(–̄pr) (2.12)
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where the coe�cients of type ⁄p,– are the scalars describing a morphism S œ
Hom(– ¢ –̄, 1G) as explained in Proposition 1.1.15. The relations 2.9, 2.10 and
2.11 can be calculated directly from the definition of intertwiner. In order to
show that the last relation is the good definition of involution (i.e. that it can
be deduced from Definition 2.5.1) and that, together with the other relations,
generates the free wreath product, we need to combine di�erent relations and
results. Firstly, it is necessary to observe that Proposition 1.1.15 implies that
⁄p,–̄ = (⁄p,–)≠1 as well as to use the relations 2.11. Moreover, we need to use
relation 2.7 which is a special case of relation 2.9, and the relation corresponding
to m̂ú ¢ Sú œ Hom(a(1G), a(–)¢a(–̄)), where Sú(1) = qd–i=1

⁄i,–e–i ¢e–̄i . Of course,
this last one is a particular case of relation 2.10 and it is given by

nR
ÿ

v=1

d–
ÿ

p=1

⁄p,–Q
≠ 1

2

v,Ra
kt,Z
iv,R(–rp)awl,Tvj,R(–̄sp) = ”ZT ”tw”rsQ

≠ 1

2

t,Z⁄r,–a
kl,Z
ij,R (1G) (2.13)

2.5.2 Spaces of intertwiners

In this section we want to generalize some previous results and some results
from [LT14], in order to describe the spaces of intertwiners of the free wreath
product H+

(B,Â)

(G) by means of decorated noncrossing partitions.

Definition 2.5.3. Let p œ NC(k, l). Suppose to decorate the k upper points of p
with the representations of the tuple – = (–

1

, ...,–k) œ Rep(G)k and the l lower
points with the representations of the tuple — = (—

1

, ..., —l) œ Rep(G)l. Denote by
bv, v = 1, ..,m the di�erent blocks of p, let Uv (Lv) be the upper (lower) points of
the block bv and let –Uv (—Lv) be the tensor product of the representations which
decorate the upper (lower) points of bv. Similarly, let HUv (HLv) be the tensor
product of the Hilbert spaces associated to these representations.
If for every block bv there is at least a non-zero morphism Sv œ Hom(–(Uv), —(Uv)),
then p is considered well decorated. If a block bv does not have lower points, the
map Sv must exist in Hom(–(Uv), 1G) so the upper points can be thought as being
connected to an imaginary lower point decorated by the trivial representation;
similarly, if there are no upper points.
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We will denote NCG(–
1

, ...,–k; —1

, ..., —l) the set of these well decorated noncrossing
partitions.

Notation 11. Let p œ NCG(–
1

, ...,–k; —1

, ..., —l) and denote by H“ the Hilbert space
of a representation “ œ Rep(G). For each block of p choose a morphism Sv. Let
S :=omv=1

Sv be the morphism obtained by means of the tensor product operation.

S :
m
p

v=1

HUv ≠æ
m
p

v=1

HLv

Then, it is quite natural to consider the map

Tp ¢ S : B¢k ¢
m
p

v=1

HUv ≠æ B¢l ¢
m
p

v=1

HLv

but, as we can observe, a morphism f œ Hom(a(–
1

)¢ ...¢a(–k), a(—1

)¢ ...¢a(—l))
is a map f œ L(oki=1

(B ¢H–i),
ol
j=1

(B ¢H—j)) so it is necessary to correctly put
in order the spaces.

Notation 12. By making use of the previous notations, we define sp,U : oki=1

(B ¢
H–i) ≠æ B¢k ¢

om
v=1

HUv and sp,L : olj=1

(B ¢ H—j) ≠æ B¢l ¢
om
v=1

HLv as the
applications which reorder the spaces associated to the upper and lower points of
p respectively.

Definition 2.5.4. The map in L(oki=1

(B ¢ H–i),
ol
j=1

(B ¢ H—j)) associated to
a decorated noncrossing partition p œ NCG(–

1

, ...,–k; —1

, ..., —l) endowed with a
morphism S œomv=1

Hom(–Uv , —Lv) is

Tp,S := s≠1

p,L ¶ (Tp ¢ S) ¶ sp,U

From Proposition 2.3.5 this compatibility result easily follows.

Proposition 2.5.5. Let p œ NCG(–
1

, ...,–k; —1

, ..., —l) be a decorated noncrossing
partition endowed with the morphism S œ omv=1

Hom(–Uv , —Lv). Similarly, let q œ
NCG(–Õ

1

, ...,–ÕkÕ ; —Õ1, ..., —ÕlÕ) be a decorated noncrossing partition endowed with the
morphism S Õ œomÕv=1

Hom(–ÕUv , —ÕLv).
Then:
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1. Tp¢q,S¢SÕ = Tp,S ¢ Tq,SÕ

2. T úp,S = Tpú,Sú

3. if l = kÕ and —i = –Õi for all i = 1, ..., kÕ there are two possibilities:

a. if Â is a (unital) ”-form, then

Tqp,SÕS = ”≠cy(p,q)Tq,SÕTp,S

b. if Ẫ is a (possibly non unital) 1-form, then

Tqp,SÕS = Ẫ(1)≠cb(p,q)Tq,SÕTp,S

Proof. The first relation follows from
Tp,S ¢ Tq,SÕ =
(s≠1

p,L ¶ (Tp ¢ S) ¶ sp,U)¢ (s≠1

q,L ¶ (Tq ¢ S Õ) ¶ sq,U) =
(s≠1

p,L ¢ s≠1

q,L) ¶ (Tp ¢ S ¢ Tq ¢ S Õ) ¶ (sp,U ¢ sq,U) =
(s≠1

p,L ¢ s≠1

q,L)(id¢ ‡≠1

1

¢ id)(id¢ ‡
1

¢ id)(Tp ¢ S ¢ Tq ¢ S Õ)(id¢ ‡≠1

2

¢ id)
(id¢ ‡

2

¢ id)(sp,U ¢ sq,U) =
s≠1

p¢q,L ¶ (Tp¢q ¢ S ¢ S Õ) ¶ sp¢q,U =
Tp¢q,S¢SÕ

where ‡
1

and ‡
2

are maps which reorder the spaces as necessary. In particular, ‡
1

:
ol
i=1

H—i¢B¢l
Õ ≠æ B¢lÕ¢oli=1

H—i and ‡
2

: oki=1

H–i¢B¢k
Õ ≠æ B¢kÕ¢oki=1

H–i .

For the second relation we observe that

T úp,S = (s≠1

p,L ¶ (Tp ¢ S) ¶ sp,U)ú

= s≠1

p,U ¶ (T úp ¢ Sú) ¶ sp,L
= s≠1

pú,L ¶ (Tpú ¢ Sú) ¶ spú,U
= Tpú,Sú

The compatibility with the multiplication (case 3a) follows from

Tq,SÕTp,S = (s≠1

q,L ¶ (Tq ¢ S Õ) ¶ sq,U) ¶ (s≠1

p,L ¶ (Tp ¢ S) ¶ sp,U)
= s≠1

q,L ¶ (Tq ¢ S Õ) ¶ (Tp ¢ S) ¶ sp,U
= ”cy(p,q)(s≠1

qp,L ¶ (Tqp ¢ S ÕS) ¶ sqp,U)
= ”cy(p,q)Tqp,SÕS
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The proof of the case 3b is identical but based on the results of Proposition 2.3.6.

The following lemma is a sort of linearity result concerning these morphisms
and will be important in the proof of the next theorem.

Lemma 2.5.6. Let p œ NCG(–
1

, ...,–k; —1

, ..., —l) be a decorated noncrossing par-
tition which can be endowed with the morphisms S, S Õ œ omv=1

Hom(–Uv , —Lv). Let
⁄, µ œ C. Then

⁄Tp,S + µTp,SÕ = Tp,⁄S+µSÕ

Proof. By applying the definition and by using the linearity of the di�erent maps
we have:

⁄Tp,S + µTp,SÕ = ⁄(s≠1

p,L ¶ (Tp ¢ S) ¶ sp,U) + µ(s≠1

p,L ¶ (Tp ¢ S Õ) ¶ sp,U)
= s≠1

p,L ¶ (Tp ¢ ⁄S) ¶ sp,U + s≠1

p,L ¶ (Tp ¢ µS Õ) ¶ sp,U
= s≠1

p,L ¶ ((Tp ¢ ⁄S) ¶ sp,U + (Tp ¢ µS Õ) ¶ sp,U)
= s≠1

p,L ¶ ((Tp ¢ ⁄S + Tp ¢ µS Õ) ¶ sp,U)
= s≠1

p,L ¶ ((Tp ¢ ⁄S + µS Õ) ¶ sp,U)
= Tp,⁄S+µSÕ

Theorem 2.5.7. Let B be a n-dimensional C*-algebra (n Ø 4) endowed with
a ”-form Â and G a compact quantum group. Consider the free wreath product
H+

(B,Â)

(G) with basic representations a(–), where – œ Irr(G). Then, for all k, l œ N

Hom(oki=1

a(–i),
ol
j=1

a(—j)) =
span{Tp,S|p œ NCG(–

1

, ...,–k; —1

, ..., —l), S œ
om
v=1

Hom(–Uv , —Lv)}

with the convention that, if k = 0, oki=1

a(–i) = 1H+

(B,Â)

(G)

and the space of the
noncrossing partitions is NCG(ÿ;olj=1

a(—j)), i.e. it does not have upper points.
Similarly, if l = 0.
Moreover, its dimension is given by qpœNCG(–

1

,...,–k;—
1

,...,—l)
rm
v=1

dim Hom(–Uv , —Lv).

Proof. In order to prove the inclusion ´, we have to show that every linear map
Tp,S obtained from a decorated noncrossing partition p endowed with a suitable



90 2. The free wreath product

morphism S is an intertwiner of H+

(B,Â)

(G). In particular, we will prove that every
Tp,S can be decomposed as a linear combination of tensor products, compositions
and adjoints of the basic morphisms m̂¢ S, ÷ and id. From Theorem 2.3.7, we
know that such a decomposition at the level of the noncrossing partitions exists.
The more di�cult point here is to decorate every block of the decomposition with
irreducible representations and to associate the right morphisms such that, if we
compose all the diagrams, we obtain the original map.
By making use of the Frobenius reciprocity (Theorem 1.1.28), we have that

Hom(
k
p

i=1

a(–i),
l
p

j=1

a(—j)) ≥= Hom(1, a(—
1

)¢ ...¢ a(—l)¢ a(–̄k)¢ ...¢ a(–̄1

))

Moreover, from the previous results it follows that the noncrossing partitions dec-
orated with the elements of Irr(G) form a monoidal rigid C*-category, denoted
N C G. The objects are all the finite sequences (–

1

, ...,–k) for all –i œ Irr(G)
and k œ N (plus the empty word ÿ) and the spaces of the morphisms are given
by Hom((–

1

, ...,–k), (—1

, ..., —l)) = span{Tp,S|p œ NCG(–
1

, ...,–k; —1

, ..., —l), S œ
om
v=1

Hom(–Uv , —Lv)}. By applying the Frobenius reciprocity in this case we get

Hom((–
1

, ...,–k), (—1

, ..., —l)) ≥= Hom(ÿ, (—
1

, ..., —l, –̄k, ..., –̄1

))

It follows that it is enough to prove the inclusion for k = 0. Moreover, we
can restrict ourselves to prove the result in the case of a one-block non crossing
partition, because the map associated to any decorated noncrossing partition in
NCG(ÿ, (—

1

, ..., —l)) can easily be obtained through compositions and tensor prod-
ucts of the maps associated to one-block noncrossing partitions and of the identity
map. Let p œ NCG(ÿ; —

1

, ..., —l), b(p) = 1 be a decorated noncrossing partition
endowed with the morphism S and consider the map Tp,S. The condition b(p) = 1
implies that S œ Hom(1G,

ol
j=1

—l) and the diagram we have to consider is like
this:

ÿ
pl =

•
—

1

•
—

2

•
—l
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We will prove the result by induction. If l = 0 the result is trivial, if l = 1 we obtain
the map ÷ which is in Hom(1, a(1G)) by definition. If l = 2, S œ Hom(1G, —1

¢ —
2

)
and the diagram can be decomposed as follows

ÿ
•
•

1G

•
—

1

•
—

2

Therefore Tp
2

,S = �
23

(mú ¢ S)÷ œ Hom(1, a(—
1

) ¢ a(—
2

)) because it can be seen
as the composition of two intertwiners. Moreover, we observe that this situation
is possible only if —

2

= —̄
1

.
If l = 3 and the morphism associated to the noncrossing partition is S œ Hom(1G, —1

¢
—

2

), we have the following decomposition.
ÿ
•
•

1G

•
—̄

3

•
—

3

• •

•
—

1

•
—

2

•
—

3

In order to complete the description of the decomposition, we need to associate a
morphism to every noncrossing partition. The morphism of the noncrossing par-
tition corresponding to ÷ is clearly id

1G , while the morphism of the lower block
corresponding to the identity is idH—

3

. In order to define the remaining morphisms
we recall the notation introduced in Definition 1.1.27 to denote the invariant vec-
tors. Let R œ Hom(1, —̄

3

¢—
3

) and R̄ œ Hom(1, —
3

¢—̄
3

) be the morphisms satisfying
the conjugate equations. Then, the morphisms associated to the two blocks cor-
responding to mú are R œ Hom(1, —̄

3

¢ —
3

) and (idH—
1

¢H—
2

¢ R̄ú)(S ¢ idH
¯—
3

) œ
Hom(—̄

3

, —
1

¢ —
2

) respectively. An easy computation allows us to verify that
S = [(idH—

1

¢H—
2

¢ R̄ú)(S ¢ idH
¯—
3

) ¢ idH—
3

]R. This means that Tp
3

,S can be de-
composed in term of some of the basic morphisms introduced in the definition of
the free wreath product and therefore is in Hom(1, —

1

¢ —
2

¢ —
3

).



92 2. The free wreath product

Now, we are ready for the inductive step. Let us suppose the inclusion true for a
l = t Ø 3 and prove it for t+1. As usual, let S œ Hom(1,ot+1

j=1

—j) be the morphism
associated to the noncrossing partition pt+1

. The decomposition which we need to
consider in this case is

ÿ
•
•

1G

•
—̄t+1

•
—t+1

• •

•
–i

•
—t

•
—t+1

• • •

•
—

1

•
—

2

•
—t≠1

•
—t

•
—t+1

· · ·

where –i µ —̄t+1

¢ —̄t.
Now, we have to assign a suitable morphism to every noncrossing partition of the
decomposition. As in the case l = 3, we associate the identity map to the diagrams
corresponding to ÷ and to id. The morphisms on the other blocks are less obvious
and we need to introduce some notations. Let us denote Rt œ Hom(1, —̄t ¢ —t),
R̄t œ Hom(1, —t ¢ —̄t), Rt+1

œ Hom(1, —̄t+1

¢ —t+1

) and R̄t+1

œ Hom(1, —t+1

¢ —̄t+1

)
two pair of invariant vectors satisfying the conjugate equations. For every –i µ
—̄t+1

¢ —̄t, we know that there is an isometry ri œ Hom(–i, —̄t+1

¢ —̄t) such that
rirúi œ End(—̄t+1

¢ —̄t) is a projection and qi rirúi = idH
¯—t+1

¢H
¯—t

. There are still
three morphisms to assign; they will be denoted S

1,i, S2,i and S
3,i. From the top to

the bottom, they are the following ones. The morphism S
1,i œ Hom(1G, —̄t+1

¢—t+1

)
is Rt+1

. The morphism S
2,i œ Hom(—̄t+1

,–i¢—t) is (túi¢idH—t )(idH¯—t+1

¢Rt). Finally,
the morphism S

3,i œ Hom(–i,
ot≠i
j=1

—j) is

(idH—
1

¢...¢H—t≠1

¢ R̄út (idH—t ¢ R̄
ú
t+1

¢ idH
¯—t

))(S ¢ idH
¯—t+1

¢H
¯—t

)ti

These are all morphisms because they are obtained through the operations of
tensor product, composition and adjoint from known morphisms. Moreover, by
making use of the Frobenius reciprocity and of the inductive hypothesis, we know
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that the linear map in L(B ¢H–i ,
ot≠1

j=1

(B ¢H—j)) associated to the noncrossing
partition endowed with the morphism S

3,i is in Hom(a(–i),
ot≠1

j=1

a(—j)). The fact
that the linear maps corresponding to the other decorated noncrossing partitions
are intertwiners follows from the definition of free wreath product. An easy com-
putation allows us to verify that qi(S3,i ¢ idH—t¢H—t+1

)(S
2,i ¢ idH—t+1

)S
1,i = S,

therefore, by making use of Lemma 2.5.6 and of Proposition 2.5.5, we have that
Tpt+1

,S œ Hom(1,ot+1

j=1

a(—j)) as it is possible to write Tpt+1

,S as a linear combination
of compositions, adjoints and tensor products of intertwiners.

For the second inclusion (™), we apply the Tannaka-Krein duality to the con-
crete rigid monoidal C*-category N C G. Then, there exists a compact quantum
group G = (C(G),�) such that C(G) is generated by the coe�cients of a family of
finite dimensional unitary representations a(–i)Õ and Hom(oki=1

a(–i)Õ,
ol
j=1

a(—j)Õ) =
span{Tp|p œ NC

‚

�

(–
1

, ...,–k; —1

, ..., —l)}. Moreover, because of the universality of
the Tannaka-Krein construction, from the inclusion already proved we can deduce
that there is a surjective map „ : C(G) ≠æ H+

(B,Â)

(G) such that (id¢ „)(a(–)Õ) =
a(–), for all – œ Irr(G). In order to complete the proof, we have to show that this
map is an isomorphism. The existence of the inverse morphism follows from the
universality of the free wreath product construction. It is enough to observe that
the unitary representations a(–)Õ are such that m̂¢ S œ Hom(a(–)Õ ¢ a(—)Õ, a(“)Õ)
for any S œ Hom(– ¢ —, “) and ÷ œ Hom(1, a(1G)Õ) because the maps m̂¢ S and
÷ correspond to well decorated noncrossing partitions.

The dimension formula follows by recalling that the maps Tp associated to
distinct noncrossing partitions in NC(k, l) are linearly independent (see Theorem
2.3.7).

Remark 2.14. The description of the space of intertwiners does not depend on
considering a unital ”-form Â or the associated non-unital 1-form Ẫ. Instead, in
what follows, it will be necessary to be in the Ẫ case, in order to prove a monoidal
equivalence result for the free wreath product.

Remark 2.15. As in the case of a discrete group, we can compute the Haar measure
of some particular elements. Consider the free wreath product H+

(B,Â)

(G), where Â
is a ”-form, and let ‰(a(1G)) := (Tr¢ id)(a(1G)) be the character of the representa-
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tion a(1G). We easily observe that ‰(a(1G)) is self-adjoint. Now, we want to com-
pute the moments h(‰(a(1G))k); let pk be the orthogonal projection onto the fixed
points space Hom(1, a(1G)¢k). Thanks to some classic results of Woronowicz (see
[Wor88]) we have h(‰(a(1G))k) = h((Tr ¢ id)(a(1G))k) = Tr((id ¢ h)(a(1G)¢k)) =
Tr(pk) = dim(Hom(1, a(1G)¢k)) = #NC(0, k) = Ck where Ck are the Catalan
numbers. They are the moments of the free Poisson law of parameter 1 which is
then the spectral measure of ‰(a(1G)).

2.5.3 Monoidal equivalence

In this part, we will prove a monoidal equivalence result for the free wreath
product. An analogous result has been proved in [LT14, Theorem 5.11], in the
particular case of the free wreath product of a compact matrix quantum group of
Kac type by the quantum symmetric group. We will show that it can be extended
to this more general context. The monoidal equivalence will allow us to reconstruct
the representation theory of H+

(B,Â)

(G) and to prove some properties of the oper-
ator algebras associated to the free wreath product. We recall the fundamental
definition.

Definition 2.5.8. Let G
1

and G
2

be two compact quantum groups. They are
monoidally equivalent (written G

1

ƒmon G
2

) if there exists a b�ection „ : Irr(G
1

) ≠æ
Irr(G

2

), „(1G
1

) = 1G
2

such that, for any k, l œ N and for any –i, —j œ Irr(G),
1 Æ i Æ k, 1 Æ j Æ l, there is an isomorphism

„ : HomG
1

(–
1

¢...¢–k; —1

¢...¢—l) ≠æ HomG
2

(„(–
1

)¢...¢„(–k);„(—1

)¢...¢„(—l))

such that:

i) „(id) = id

ii) „(F ¢G) = „(F )¢ „(G)

iii) „(F ú) = „(F )ú

iv) „(FG) = „(F )„(G) for F,G composable morphisms
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The following theorem generalises the monoidal equivalence result proved in
[LT14, Theorem 5.11], where the case of the free wreath product of a compact ma-
trix quantum group of Kac type by the quantum symmetric group was considered.

Theorem 2.5.9. Let (B, Ẫ) be a finite dimensional C*-algebra, dim(B) Ø 4,
endowed with a possibly non-unital 1-form Ẫ. Let 0 < q Æ 1 be such that q+ q≠1 =
Ò

Ẫ(1). Let G be a compact quantum group and consider the free wreath product
G Óú Gaut(B, Ẫ). Let H be the compact quantum subgroup of Gú̂SUq(2) given by

C(H) =< bijabkl | 1 Æ i, j, k, l Æ 2, a œ C(G) >µ C(G) ú C(SUq(2))

�H := �GˆúSUq(2)|H

More precisely

�(bijabkl) =
ÿ

r,s,v

bira(1)

bks ¢ brja(2)

bsl œ C(H)¢ C(H)

where b = (bij)ij is the generating matrix of SUq(2) and �G(a) = q a
(1)

¢ a
(2)

.
Then

G Óú Gaut(B, Ẫ) ƒmon H

Proof. By doing some minor changes and remarks, the proof presented in [LT14]
works also in this more general case, so we will only give a sketch of the arguments,
pointing out the critical passages in the adaptation to this context. The first
remark is about the existence of a q œ (0, 1] such that q + q≠1 =

Ò

Ẫ(1). An easy
computation shows that q + q≠1 : (0, 1] ≠æ [2,Œ) is a b�ection, therefore the
monoidal equivalence makes sense only if Ẫ(1) Ø 4. We recall that Ẫ : B ≠æ C
is a 1-form so it can be rewritten as Ẫ(·) = q⁄Tr(Q⁄·) for a suitable family of
positive diagonal matrices Q⁄ such that Tr(Q≠1

⁄ ) = 1 for every ⁄. With this in
mind, the condition Ẫ(1) Ø 4 is a consequence of the following arithmetic lemma.

Lemma 2.5.10. Let (xi)i=1,...,n, xi > 0 and n Ø 2 be a family of positive real
numbers such that qni=1

xi Æ 1. Then qni=1

x≠1

i Ø 4.

This lemma can simply be proved by recalling the inequality between the harmonic
mean and the arithmetic mean.
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The proof of the monoidal equivalence is based on the construction of an explicit
isomorphism between the intertwining spaces. In this first phase, we will take
into account intertwiners between the tensor products of the representations which
generate the compact quantum groups; only in a second time, this isomorphism
will be extended to intertwiners between tensor products of all the irreducible
representations. Consider the family of representations of H given by s(–) :=
b ¢ – ¢ b, – œ Irr(G). By using the description of the irreducible representations
of a free product given by Wang in [Wan95], we have that {s(–)|– œ Irr(G),– ”=
1G} µ Irr(H). Moreover, we observe that, for any — œ Irr(H), there exists a finite
family (–i)i=1,...,k, – œ Irr(G) such that — µ oki=1

s(–i) because the coe�cients of
the representations s(–) are dense in C(H). Let us denote „ the map such that
„(s(–)) := a(–), „(1H) = 1H+

(B,Â)

(G)

. Then, it is possible to define an isomorphism

„ : Hom(
k
p

i=1

s(–i),
l
p

j=1

s(—j)) ≠æ Hom(
k
p

i=1

a(–i),
l
p

j=1

a(—j))

which satisfies the properties of a monoidal equivalence. The core idea in order
to define this map is to find a good description of the two spaces of intertwiners.
The spaces on the right have been described in terms of decorated noncrossing
partitions in Theorem 2.5.7.
The intertwiners of H can be described by means of semi-decorated noncrossing
partitions in NC(3k, 3l) such that, when numbering each line of points from the
left to the right, the points with a number equal to 0 or 2 modulo 3 form a
Temperley-Lieb diagram in TL(2k, 2l) and the remaining points form a decorated
noncrossing partition in NC((–

1

, ...,–k), (—1

, ..., —l)) endowed with a morphism S.
This presentation can be proved by recalling that the intertwiners of SUq(2) can be
described in terms of Temperley-Lieb diagrams (such that the coe�cient q+ q≠1 is
introduced for every central block removed during the composition operation) and
by knowing the description of the intertwiners of a free product of two compact
quantum groups in terms of the intertwiners of the factors (see Proposition 2.15
in [Lem14] and observe that the result is true for every compact quantum groups,
even if it is stated only for compact matrix quantum groups).
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Now, in order to describe the map „, we recall that there is an isomorphism

fl : TLx(2k, 2l) ≠æ NCx2(k, l), x œ R+

which satisfies all the compatibility properties of Definition 2.5.8 (but at the level
of the diagrams). The subscripts x and x2 mean that when composing two di-
agrams, the final diagram is multiplied by a coe�cient x or x2 for every central
block appeared. More precisely, fl acts by associating to each Temperley-Lieb di-
agram the noncrossing partition obtained by identifying the pairs of consecutive
points and by multiplying this partition by a suitable coe�cient (which depends
on the diagram). This coe�cient is crucial to assure the compatibility with the
multiplication given by fl(t

2

t
1

) = fl(t
2

) ¶ fl(t
1

) for t
1

, t
2

composable Temperley-Lieb
diagrams.
The map „ is then defined by sending every special diagram described above to
the noncrossing partition obtained after applying the map fl to the Temperley-Lieb
diagram and decorating the points with the –i, —j. Finally, this noncrossing parti-
tion is endowed with the map S (actually, some twist operations can be necessary,
but for simplicity we keep the same notation). In this case, the subscript x, in-
troduced in the definition of fl, has to be chosen equal to q + q≠1, the coe�cient
corresponding to central blocks for SUq(2).
Then, every central block appeared when composing the associated noncrossing
partitions, will correspond to (q + q≠1)2 and this factor is by hypothesis equal to
Ẫ(1), the coe�cient corresponding to central blocks for H+

(B, ˜Â)

(G). Thanks to this
choice, it is possible to verify that „ is a well defined isomorphism and satisfies all
the properties of Definition 2.5.8.
We observe that, in order to use the isomorphism fl, it has been crucial the de-
pendence on the number of central blocks (instead of on the number of cycles) of
the coe�cient possibly appeared when composing two noncrossing partitions. This
explains the use of Ẫ instead of Â.
In order to complete the proof, it is enough to observe that the map „ is an equiv-
alence between the categories containing the tensor products of the generating
representations of the two compact quantum groups and that there is a correspon-
dence between these generators. By applying Proposition 1.1.32, we can extend „



98 2. The free wreath product

to an equivalence „̃ between the completions of the two categories with respect to
direct sums and sub-objects. The map „̃ is in particular a b�ection between the
irreducible representations and the monoidal equivalence is proved.

2.5.4 Irreducible representations and fusion rules

We find the irreducible representations and the fusion rules of the free wreath
product G Óú Gaut(B,Â). The next result follows from Theorem 2.5.7 and is a
generalisation of [LT14, Cor 3.9].

Proposition 2.5.11. Let B be a finite dimensional C*-algebra, dim(B) Ø 4, en-
dowed with a ”-form Â. Let G be a compact quantum group. The basic represen-
tations a(–), – œ Irr(G) of H+

(B,Â)

(G) are irreducible and pairwise non-equivalent
if – ”ƒ 1G. The representation a(1G) can be decomposed as 1H+

(B,Â)

(G)

ü r
1G, where

r
1G is irreducible and non-equivalent to any a(–),– ”ƒ 1G.

Proof. As in [LT14], this proposition is proved looking at the dimension of the
space Hom(a(–), a(—)) for –, — œ Irr(G). There are only two possible noncrossing
partitions to decorate.

•–

•
—

•–

•
—

If – ƒ — ”ƒ 1G, only the second diagram is admissible, indeed, in this case, we have
that dim Hom(–, 1G) = 0 and dim Hom(–,–) = 1, so dim Hom(a(–), a(–)) = 1 and
the irreducibility of the a(–) is proved. If – ”ƒ —, it is clear that dim Hom(–, —) = 0
and dim Hom(a(–), a(—)) = 0. This proves the non-equivalence.
If – ƒ — ƒ 1G, both diagrams are admissible because dim Hom(1G, 1G) = 1. It
follows that dim Hom(a(1G), a(1G)) = 2, so the linear independence of the inter-
twiners associated to distinct noncrossing partitions together with the remark that
dim Hom(1H+

(B,Â)

(G)

, a(1G)) = 1 (the multiples of ÷) give the decomposition.

Now, we can describe the fusion semiring of H+

(B,Â)

(G). As in the discrete case,
the irreducible representations will be indexed by the elements of a monoid.
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Definition 2.5.12. Let M be the monoid whose elements are the words written
by using the irreducible representations of G as letters. We define the following
operations:

- involution: (–
1

, ...,–k) = (–k, ...,–1

)

- concatenation: (–
1

, ...,–k), (—1

, ..., —l) = (–
1

, ...,–k, —1

, ..., —l)

- fusion of two non-empty words: (–
1

, ...,–k).(—1

, ..., —l) is the multiset com-
posed by the words (–

1

, ...,–k≠1

, “, —
2

, ..., —l) for all the possible “ µ –k¢ —1

;
the multiplicity of each word is given by dim(Hom(“,–k ¢ —1

)), i.e. by the
multiplicity of the representation “ in the tensor product –k ¢ —1

.

Theorem 2.5.13. Let B be a finite dimensional C*-algebra, dim(B) Ø 4, endowed
with a ”-form Â. Let G be a compact quantum group. The classes of irreducible
non-equivalent representations of H+

(B,Â)

(G) can be indexed by the elements of the
monoid M and denoted rx, x œ M . The involution is given by rx = rx and the
fusion rules are:

rx ¢ ry =
ÿ

x=u,t
y=¯t,v

ru,v ü
ÿ

x=u,t y=¯t,v
u ”=ÿ,v ”=ÿ
wœu.v

rw

Because of the monoidal equivalence proved in Theorem 2.5.9, it is enough to
verify that these are the fusion rules of H; this proof can be found in [LT14].

Remark 2.16. If G is a matrix quantum group with fundamental representation u,
it is possible to find a fundamental representation also for the free wreath product
H+

(B,Â)

(G). Let u = mti=1

–i be the decomposition of u in terms of the irreducible
representations –i œ Irr(G). Then, mti=1

a(–i) is a representation of H+

(B,Â)

(G)
which can be considered as fundamental because its coe�cients generates a C*-
algebra dense in H+

(B,Â)

(G). Indeed, for every r œ Irr(G), there exists k œ N such
that r ™ u¢k; this implies that r ™ okj=1

–ij . Therefore, by making use of the
fusion rules just found, we deduce that a(r) ™okj=1

a(–ij) ™ (mti=1

a(–i))¢k. This
proves that every generator a(r) of the free wreath product is included in a suitable
tensor product of copies of the fundamental representation.



100 2. The free wreath product

The description of the fusion semiring just given can be generalized to the case
of a state Â which is not a ”-form, thanks to the following proposition. This result
will be widely used also in what follows, in order to prove some algebraic and
analytical properties in a more general framework.

Proposition 2.5.14. Let B = mcT=1

MnT (C) be a finite dimensional C*-algebra
and Â = mcT=1

Tr(QT ·) a state on B. Consider the decomposition B = mdi=1

Bi

obtained by summing up all the matrix spaces MnT (C) with a common value of
Tr(Q≠1

T ) in a unique summand Bi and let ”i be the value of such a trace. Let Âi be
the normalized version of Â|Bi . Then

G Óú Gaut(B,Â) ≥= ú̂di=1

G Óú Gaut(Bi,Âi)

is a ú-isomorphism intertwining the comultiplications.

Proof. The proof consists in the explicit construction of the isomorphism. We
fix the notations M = C(H+

(B,Â)

(G)) and Ni = C(H+

(Bi,Âi)
(G)) for 1 Æ i Æ d.

Let a(–) œ L(B ¢ H–) ¢M , – œ Irr(G) be the family of generators of M and
let a(–)i œ L(Bi ¢ H–) ¢ Ni, – œ Irr(G) be the family of generators of Ni, for
1 Æ i Æ d. Let m, ÷ be the multiplication and the unity of B and let mi, ÷i be
the multiplication and the unity of Bi. Moreover, let ‹i : Bi ≠æ B be a family of
isometries such that ‹i‹úi are pairwise orthogonal projections and qi ‹i‹úi = idB.
Define the element v(–) œ L(B ¢H–)¢ údi=1

Ni by

v(–) =
ÿ

i

(‹i ¢ idH– ¢ 1)a(–)i(‹úi ¢ idH– ¢ 1)

We claim that there exists a unital ú-homomorphism � : M ≠æ údi=1

Ni such
that (idB¢H– ¢ �)a(–) = v(–). By the universality of the free wreath product
construction it is enough to verify that

1. v(–) is unitary

2. (m ¢ S)�
23

œ Hom(v(–) ¢ v(—), v(“)) for any –, —, “ œ Irr(G) and S œ
Hom(–¢ —, “)

3. ÷ œ Hom(1, v(1))
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Let us prove (1). Since the ‹i‹úi are pairwise orthogonal we have ‹úi ‹k = 0 if i ”= k
and ‹úi ‹i = idBi . It follows that
v(–)v(–)ú = q

i,k(‹i ¢ id¢ 1)a(–)i(‹úi ¢ id¢ 1)(‹k ¢ id¢ 1)a(–)úk(‹úk ¢ id¢ 1)
= q

i(‹i ¢ id¢ 1)a(–)ia(–)úi (‹úi ¢ id¢ 1)
= idB ¢ id¢ 1

Similarly, v(–)úv(–) = idB ¢ id¢ 1.
Let us prove (2). Observe that ‹újm(‹i¢‹k) = ”ik”ijm and that qi ‹imi(‹úi ¢‹úi ) =
m. Then
((m¢ S)�

23

¢ 1)v(–)¢ v(—) =
((m¢ S)�

23

¢ 1)qi,k(‹i ¢ id¢ ‹k ¢ id¢ 1)(a(–)i ¢ a(—)k)(‹úi ¢ id¢ ‹úk ¢ id¢ 1) =
q

i,k((m(‹i ¢ ‹k)¢ S)�
23

¢ 1)(a(–)i ¢ a(—)k)(‹úi ¢ id¢ ‹úk ¢ id¢ 1) =
q

i,j,k(‹j ¢ id¢ 1)((‹újm(‹i ¢ ‹k)¢ S)�
23

¢ 1)(a(–)i ¢ a(—)k)(‹úi ¢ id¢ ‹úk ¢ id¢ 1) =
q

i(‹i ¢ id¢ 1)((mi ¢ S)�
23

¢ 1)(a(–)i ¢ a(—)i)(‹úi ¢ id¢ ‹úi ¢ id¢ 1) =
q

i(‹i ¢ id¢ 1)a(“)i((mi(‹úi ¢ ‹úi )¢ S)�
23

¢ 1) =
q

i(‹i ¢ id¢ 1)a(“)i(‹úi ¢ id¢ 1)((qk ‹kmk(‹úk ¢ ‹úk)¢ S)�
23

¢ 1) =
v(“)((m¢ S)�

23

¢ 1)
Let us prove (3). Observe that ‹úi ÷ = ÷i and qi ‹i÷i = ÷. We have
v(1)(÷ ¢ 1) = q

i(‹i ¢ 1)a(1)i(‹úi ¢ 1)(÷ ¢ 1)
= q

i(‹i ¢ 1)a(1)i(÷i ¢ 1)
= q

i(‹i ¢ 1)(÷i ¢ 1)
= ÷ ¢ 1

A simple verification allows us to show that this homomorphism intertwines the
comultiplications. This ends the first part of the proof.
In order to construct the inverse homomorphism we need some preliminary results.
We claim that, for all i, ‹i‹úi ¢ idH– œ Hom(a(–), a(–)). Consider the morphism
m̂¢ S œ Hom(a(–) ¢ a(1G), a(–)), where S œ Hom(– ¢ 1G,–) is the identity
morphism and observe that

(m̂¢ S) ¶ (m̂¢ S)ú = mmú ¢ idH– =
d
ÿ

i=1

”i · ‹i‹úi ¢ idH– œ Hom(a(–), a(–))

For a suitable constant K, we have

‹i‹
ú
i ¢ id = K

d
Ÿ

k=1

k ”=i

(”kidB ≠
ÿ

l

”l‹l‹
ú
l )¢ id
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This implies that ‹i‹úi ¢ id œ Hom(a(–), a(–)).
Now, for all 1 Æ i Æ d define the element v(–)i œ L(Bi ¢H–)¢M by

v(–)i = (‹úi ¢ idH– ¢ 1)a(–)(‹i ¢ idH– ¢ 1)

We claim that, for all i, there exists a unital ú-homomorphism �i : Ni ≠æM such
that (idBi¢H– ¢ �i)a(–)i = v(–)i. By the universality of the C*-algebra Ni it is
enough to verify that

1. v(–)i is unitary

2. (mi ¢ S)�
23

œ Hom(v(–)i ¢ v(—)i, v(“)i) for any –, —, “ œ Irr(G) and S œ
Hom(–¢ —, “)

3. ÷i œ Hom(1, v(1)i)

Let us prove (1). We have
v(–)iv(–)úi = (‹úi ¢ id¢ 1)a(–)(‹i ¢ id¢ 1)(‹úi ¢ id¢ 1)a(–)ú(‹i ¢ id¢ 1)

= (‹úi ¢ id¢ 1)a(–)(‹i‹úi ¢ id¢ 1)a(–)ú(‹i ¢ id¢ 1)
= (‹úi ¢ id¢ 1)(‹i‹úi ¢ id¢ 1)a(–)a(–)ú(‹i ¢ id¢ 1)
= idBi ¢ id¢ 1

Similarly, v(–)úi v(–)i = idBi ¢ id¢ 1.
Let us prove (2). Recall that mi = ‹úim(‹i ¢ ‹i), then (‹imi(‹úi ¢ ‹úi ) ¢ S)�

23

=
(‹i‹úi ¢ id)(m ¢ S)�

23

(‹i‹úi ¢ id ¢ ‹i‹úi ¢ id) œ Hom(a(–)i ¢ a(—)i, a(“)i). Hence
((mi ¢ S)�

23

¢ 1)v(–)i ¢ v(—)i =
((mi ¢ S)�

23

¢ 1)(‹úi ¢ id¢ ‹úi ¢ id¢ 1)(a(–)¢ a(—))(‹i ¢ id¢ ‹i ¢ id¢ 1) =
((mi(‹úi ¢ ‹úi )¢ S)�

23

¢ 1)(a(–)¢ a(—))(‹i ¢ id¢ ‹i ¢ id¢ 1) =
(‹úi ¢ id¢ 1)((‹imi(‹úi ¢ ‹úi )¢ S)�

23

¢ 1)(a(–)¢ a(—))(‹i ¢ id¢ ‹i ¢ id¢ 1) =
(‹úi ¢ id¢ 1)a(“)((‹imi(‹úi ¢ ‹úi )¢ S)�

23

¢ 1)(‹i ¢ id¢ ‹i ¢ id¢ 1) =
(‹úi ¢ id¢ 1)a(“)((‹imi(‹úi ‹i ¢ ‹úi ‹i)¢ S)�

23

¢ 1) =
(‹úi ¢ id¢ 1)a(“)(‹i ¢ id¢ 1)((mi ¢ S)�

23

¢ 1) =
v(“)i((mi ¢ S)�

23

¢ 1)
Let us prove (3). Observe that ‹i÷i = (‹i‹úi )÷ œ Hom(1, a(1)). Then
v(1)i(÷i ¢ 1) = (‹úi ¢ 1)a(1)(‹i ¢ 1)(÷i ¢ 1)

= (‹úi ‹i ¢ 1)(÷i ¢ 1)
= (÷i ¢ 1)
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This completes the proof of the existence of the morphism �i : Ni ≠æ M , for
all i. Then, because of the universality of the free product construction, there
exists a unital ú-homomorphism � : údi=1

Ni ≠æM such that (idBi¢H–¢�)a(–)i =
v(–)i and it is easy to verify that this morphism intertwines the comultiplications.
Finally, a simple computation allows us to prove that � and � are inverse to each
other and this ends the proof.

The results in [Wan95] together with this proposition allow us to describe the ir-
reducible representations and fusion rules of the free wreath product GÓúGaut(B,Â),
for a generic state Â.

2.5.5 Stability properties of the free wreath product

We present some stability results concerning the operation of free wreath prod-
uct. More precisely, we prove that the free wreath product preserves the relation of
monoidal equivalence and we find under which conditions two free wreath products
have isomorphic fusion semiring.

We start by recalling a result from [DRVV10] about the monoidal equivalence
of quantum automorphism groups.

Theorem 2.5.15. Consider the quantum automorphism groups (C(Gaut(B,Â)), u)
and (C(Gaut(BÕ,ÂÕ)), uÕ), where Â and ÂÕ are a ”-form and a ”Õ-form respectively.
Then they are monoidally equivalent if and only if ” = ”Õ

All the details of the proof can be found in [DRVV10]. Anyway, we want to give
a simpler demonstration of the first ”if” because we will use the same technique to
prove some results concerning the free wreath product.

Proof. We have to construct the maps and to verify the properties of Definition
2.5.8. First of all, let „ be the b�ection satisfying „(u) = uÕ and „(1) = 1,
where u and uÕ are the fundamental representations. We use the same notation
to denote, for every k, l œ N, the map „(Tp) = T Õp, where Tp is the morphism
in HomGaut(B,Â)

(u¢k, u¢l) associated to a noncrossing partition p œ NC(k, l) and
T Õp is the morphism in HomGaut(BÕ,ÂÕ)(uÕ¢k, uÕ¢l) associated to the same noncrossing
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partition p. As the Tp and the T Õp are a basis of the respective spaces of intertwiners,
„ can extended by linearity to an isomorphism

„ : HomGaut(B,Â)

(u¢k, u¢l) ≠æ HomGaut(BÕ,ÂÕ)(uÕ¢k, uÕ¢l)

It is clear that „(id) = id because �(T|···|) = T Õ|···|, where | · · · | is the noncrossing
partition in NC(k, k) which connects each of the k upper points to the respective
lower point.
The second property which is required is the compatibility with the tensor product:
�(P ¢Q) = �(P )¢�(Q) for all P,Q morphisms. For P = Tp and Q = Tq we have
�(Tp ¢ Tq) = �(Tp¢q) = T Õp¢q = T Õp ¢ T Õq = �(Tp)¢�(Tq). The results holds for all
the pairs P,Q of morphisms by linearity of „.
The third property is the compatibility with respect to the adjoint: �(P ú) = �(P )ú

for all morphisms P . If P = Tp we have �(T úp ) = �(Tpú) = T Õpú = T Õúp = �(Tp)ú.
The results holds for all morphisms P by linearity of „.
The compatibility with the composition is a little more subtle and it is the part of
the proof where the hypothesis ” = ”Õ is used. We want to prove that „(S ¶ R) =
„(S)¶„(R) for all R, S composable morphisms. Suppose S = Tp and R = Tq, then
we have „(Tp ¶Tq) = „(”cy(p,q)Tpq) = ”cy(p,q)T Õpq = T Õp ¶T Õq = „(Tp)¶„(Tq), where the
second to last equality is true only because of the assumption ” = ”Õ. The results
holds for all the pairs of composable morphisms by linearity of „.
In order to complete the proof, we observe that „ is an equivalence between the
categories

C = {(u¢k, k œ N), (Hom(u¢k, u¢l), k, l œ N)}

and
D = {(uÕ¢k, k œ N), (Hom(uÕ¢k, uÕ¢l), k, l œ N)}

Then, by applying Proposition 1.1.32, it is possible to extend „ to an equivalence
„̃ between the completion of the two categories with respect to direct sums and
sub-objects.
Moreover, the map „̃ can be restricted to a b�ection

„̃|
Irr(Gaut(B,Â))

: Irr(Gaut(B,Â)) ≠æ Irr(Gaut(BÕ,ÂÕ))
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and the monoidal equivalence is proved.

Theorem 2.5.16. Let G
1

and G
2

be two monoidally equivalent compact quantum
groups. Let B,BÕ be two finite dimensional C*-algebras of dimension at least 4
endowed with the ”-form Â and the ”Õ-form ÂÕ respectively. Suppose that the asso-
ciated quantum automorphism groups Gaut(B,Â) and Gaut(BÕ,ÂÕ) are monoidally
equivalent. Then

H+

(B,Â)

(G
1

) ƒmon H+

(BÕ,ÂÕ)(G2

)

The monoidal equivalence is preserved by the free wreath product by a quantum
automorphism group.

Proof. Let „ : Irr(G
1

) ≠æ Irr(G
2

) be the map which establishes the monoidal
equivalence between G

1

and G
2

. The proof is divided into two parts: firstly, we
define the map � (which satisfies the properties of the monoidal equivalence) on
the basic representations which generate the two free wreath products and later
on we will observe that we can extend � to all the irreducible representations. Let
us denote by a(–),– œ Irr(G

1

) the basic representations of H+

(B,Â)

(G
1

). Then, we
define the following b�ection:

�(a(–)) = a(„(–)) �(1) = 1

We use the same notation to define, for every –
1

, ...,–k, —1

, ..., —l œ Irr(G
1

), the
map

�(Tp,S) = T Õp,„(S)

where Tp,S is the morphism in HomH+

(B,Â)

(G
1

)

(a(–
1

)¢ ...¢ a(–k), a(—1

)¢ ...¢ a(—l))
associated to a noncrossing partition p œ NCG

1

(–
1

, ...,–k; —1

, ..., —l) decorated with
an intertwiner S and T Õp,„(S)

is the morphism in HomH+

(BÕ,ÂÕ)(G
2

)

(a(„(–
1

)) ¢ ... ¢
a(„(–k)), a(„(—1

)) ¢ ... ¢ a(„(—l))) associated to the same noncrossing partition
p, decorated with the intertwiner „(S). Now, we recall that the morphisms of
type Tp,S and T Õp,„(S)

span the respective spaces of intertwiners, the maps Tp (T Õp)
associated to distinct noncrossing partitions are linearly independent, „ is an iso-
morphism and we have Lemma 2.5.6. The map � can then be extended by linearity
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to the following isomorphism:

� : HomH+

(B,Â)

(G
1

)

(a(–
1

)¢ ...¢ a(–k), a(—1

)¢ ...¢ a(—l)) ≠æ

HomH+

(BÕ,ÂÕ)(G
2

)

(a(„(–
1

))¢ ...¢ a(„(–k)), a(„(—1

))¢ ...¢ a(„(—l)))

Moreover, the properties required by Definition 2.5.8 are verified.
The first condition �(id) = id is clear because �(T|···|,id) = T Õ|···|,„(id)

and „(id) = id.
The second property which is required is the compatibility with the tensor product:
�(P¢Q) = �(P )¢�(Q) for all P,Q morphisms. If P = Tp,S and Q = Tq,R we have
�(Tp,S ¢ Tq,R) = �(Tp¢q,S¢R) = T Õp¢q,„(S¢R)

= T Õp¢q,„(S)¢„(R)

= T Õp,„(S)

¢ T Õq,„(R)

=
�(Tp,S)¢�(Tq,R). The results holds for all the pairs P,Q of morphisms by linearity
of �.
The third property is the compatibility with respect to the adjoint: �(P ú) = �(P )ú

for all morphisms P . If P = Tp,S we have �(T úp,S) = �(Tpú,Sú) = T Õpú,„(Sú) =
T Õpú,„(S)

ú = T Õúp,„(S)

= �(Tp,S)ú. The results holds for all the morphisms P by
linearity of �.
The last condition is the compatibility with respect to the composition: �(P ¶Q) =
�(P ) ¶ �(Q) for all composable morphisms P,Q. We observe that, because of
Theorem 2.5.15, we have ” = ”Õ. Now, suppose that P = Tp,S and Q = Tq,R.
We have �(Tp,S ¶ Tq,R) = �(”cy(p,q)Tqp,RS) = ”cy(p,q)T Õqp,„(RS)

= ”cy(p,q)T Õqp,„(R)¶„(S)

=
T Õp,„(R)

¶ T Õq,„(S)

= �(Tp,R) ¶ �(Tq,S). The results holds for all the pairs P,Q of
composable morphisms by linearity of �.
As in the proof of Theorem 2.5.15, we can observe that � is an equivalence between
the categories

C = {(
k
p

i=1

a(–i),–i œ Irr(G
1

), k œ N), (Hom(
k
p

i=1

a(–i),
l
p

j=1

a(—i)), –i, —i œ Irr(G
1

))

and

D = {(
k
p

i=1

a(–i),–i œ Irr(G
2

), k œ N), (Hom(
k
p

i=1

a(–i),
l
p

j=1

a(—i)), –i, —i œ Irr(G
2

))

Then, by applying Proposition 1.1.32, it is possible to extend � to an equivalence
�̃ between the completion of the two categories with respect to the direct sums
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and the sub-objects.
Moreover, the representations generating the two free wreath products are in cor-
respondence so we can restrict �̃ to the b�ection

�̃|
Irr(H+

(B,Â)

(G
1

))

: Irr(H+

(B,Â)

(G
1

)) ≠æ Irr(H+

(B,Â)

(G
2

))

and the monoidal equivalence is proved.

Theorem 2.5.17. Let G
1

and G
2

be two compact quantum groups. Suppose that
there exists an isomorphism „ : R+(G

1

) ≠æ R+(G
2

) of their fusion semirings and
that „ restricted to Irr(G

1

) is a b�ection of Irr(G
1

) onto Irr(G
2

). Let B,BÕ be two
finite dimensional C*-algebras of dimension at least 4 endowed with the ”-form
Â and the ”Õ-form ÂÕ respectively. Then, the fusion semirings remain isomorphic
when passing to the free wreath product by a quantum automorphism group

R+(H+

(B,Â)

(G
1

)) ≥= R+(H+

(BÕ,ÂÕ)(G2

))

and the isomorphism is still a b�ection between the spaces of the irreducible repre-
sentations.

Proof. We recall that the irreducible representations of the free wreath product
H+

(B,Â)

(G
1

) can be indexed by the elements of the monoid M , i.e. by the words
written using as letters the irreducible representations of G

1

. The monoid is en-
dowed with the three operations of involution, concatenation and fusion introduced
in Definition 2.5.12. We will denote rx, x œM the irreducible representations. Let
� be the map given by �(rx) = r„(x), where for every word x = (–

1

, ...,–k) œ M ,
we define „(x) := („(–

1

), ...,„(–k)). We observe that the map � can be extended
by additivity to

� : R+(H+

(B,Â)

(G
1

)) ≠æ R+(H+

(BÕ,ÂÕ)(G2

))

Moreover, � is an isomorphism because „ is a b�ection and Irr(G) is a basis of
R+(G). Then, the proof reduces to show that, for all x, y œM , we have

�(rx ¢ ry) = �(rx)¢ �(ry) (2.14)

�(rx) = �(rx) (2.15)



108 2. The free wreath product

For this verification it is necessary to state a preliminary result which assures the
compatibility between the map „ and the operations of the monoid M : more pre-
cisely, we need to prove that, for all u, v œ M , „(u, v) = „(u),„(v), „(u) = „(u)
and „(u.v) = „(u).„(v). To this aim, let u = (–

1

, ...,–k) and v = (—
1

, ..., —l). It fol-
lows that „(u, v) = „((–

1

, ...,–k, —1

, ..., —l)) = („(–
1

), ...,„(–k),„(—1

), ...,„(—l)) =
„(u),„(v).
Similarly „(u) = „((–k, ...,–1

)) = („(–k), ...,„(–1

)) = („(–k), ...,„(–1

)) = „(u).
For the third relation we have

„(u.v) = „(m“µ–k¢—1

(–
1

, ...,–k≠1

, “, —
2

, ..., —l))
= m

„(“)µ„(–k¢—1

)

(„(–
1

), ...,„(–k≠1

),„(“),„(—
2

), ...,„(—l))
= m

„(“)µ„(–k)¢„(—
1

)

(„(–
1

), ...,„(–k≠1

),„(“),„(—
2

), ...,„(—l))
= „((–

1

, ...,–k)).„((—1

, ..., —l))

Now, we are ready to prove equation 2.14. We have

�(rx ¢ ry) = �(qx=u,t
y=t,v
ru,v ü

q

x=u,t
y=t,v
u ”=ÿ,v ”=ÿ

ru.v)

= q

x=u,t
y=t,v

�(ru,v)ü
q

x=u,t
y=t,v
u ”=ÿ,v ”=ÿ

�(ru.v)

= q

„(x)=„(u,t)
„(y)=„(t,v)

r„(u,v) ü
q

„(x)=„(u,t)
„(y)=„(t,v)
„(u) ”=ÿ,„(v) ”=ÿ

r„(u.v)

= q

„(x)=„(u),„(t)

„(y)=„(t),„(v)

r„(u),„(v) ü
q

„(x)=„(u),„(t)

„(y)=„(t),„(v)
„(u) ”=ÿ,„(v) ”=ÿ

r„(u).„(v)

= r„(x) ¢ r„(y)
= �(rx)¢ �(ry)

The relation 2.15 is clear because �(rx) = �(rx) = r„(x) = r„(x) = r„(x) = �(rx).

2.5.6 Algebraic and analytic properties

The monoidal equivalence result proved in Theorem 2.5.9 allows us to prove
some properties of the reduced C*-algebra and of the von Neumann C*-algebra
associated to a free wreath product. Before taking into account these properties,



2.5 The free wreath product G Óú Gaut(B,Â) 109

we state some preliminary results which will be useful in what follows. First of
all, we observe that an analogue of Proposition 2.5.14 holds when dealing with the
associated operator algebras.

Remark 2.17. By using the free wreath product decomposition introduced in Propo-
sition 2.5.14 and a classic result of Wang [Wan95], we observe that the Haar mea-
sure of H+

(B,Â)

(G) is the free product of the Haar measures of its factors. Hence,
the following isomorphisms hold:

(Cr(H+

(B,Â)

(G)), h) ≥= ú
red

k

i=1

(Cr(H+

(Bi,Âi)
(G)), hi)

(LŒ(H+

(B,Â)

(G)), h) ≥= úki=1

(LŒ(H+

(Bi,Âi)
(G)), hi)

where h and hi are the Haar states on the respective C*-algebras.

We observe also that the free wreath product of compact quantum groups of
Kac type is still of Kac type.

Proposition 2.5.18. If G is a compact quantum group of Kac type and Â is a
”-trace, then the free wreath product H+

(B,Â)

(G) is of Kac type.

Proof. First of all, we recall that Gaut(B,Â) is of Kac type, if Â is a ”-trace (see
[Wan98]). Therefore, the proposition can be read as a sort of stability of the free
wreath product with respect to the property of being Kac.
In order to show that H+

(B,Â)

(G) is of Kac type, we will prove that the antipode
is involutory. According to Woronowicz, the antipode is given by the map S :
H+

(B,Â)

(G) ≠æ H+

(B,Â)

(G), akl,Zij,R (–pq) ‘æ aij,Rkl,Z(–qp)ú. By applying the definition, we
have that

S2(akl,Zij,R (–pq)) = S(aij,Rkl,Z(–qp)ú)
= S((Qk,ZQj,RQi,RQl,Z

) 1

2

⁄p,–
⁄q,–
aji,Rlk,Z(–̄qp))

= (Qk,ZQj,RQi,RQl,Z
) 1

2

⁄p,–
⁄q,–
alk,Zji,R(–̄pq)ú

= Qk,ZQj,R
Qi,RQl,Z

⁄p,–
⁄q,–

⁄q,–̄
⁄p,–̄
akl,Zij,R (–pq)

Therefore, in order to prove that the free wreath product is Kac, we have to show
that Qk,ZQj,RQi,RQl,Z

⁄p,–
⁄q,–

⁄q,–̄
⁄p,–̄

= 1.
Firstly, we observe that Â(eij,Rekl,Z) = ”RZ”jkÂ(eil,R) = ”RZ”jk”ilQi,R and Â(ekl,Zeij,R) =
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”RZ”ilÂ(ekj,R) = ”RZ”jk”ilQk,R. If Â is a ”-trace, the resulting values must be equal.
This implies that, for every R and every i, j, we have Qi,R = Qj,R, i.e. that the ma-
trices QR characterizing Â are multiples of the identity. In particular, this means
that Qk,ZQj,RQi,RQl,Z

= 1.
In order to complete the proof, it is enough to observe that ⁄i,– = 1 for all i,–
because G is of Kac type (see Remark 1.5).

We can now prove some approximation properties by making use of some results
in [DCFY14]. First of all, we recall some definitions.

Definition 2.5.19. Let (C(G),�) be a full compact quantum group. The space of
the functionals C(G)ú, endowed with the multiplication („

1

„
2

)(x) = („
1

¢„
2

)�(x)
for „

1

,„
2

œ C(G)ú, x œ C(G) and the involution „ú(x) = „(S(xú)) for „ œ C(G)ú,
x œ C(G) is a unital associative ú-algebra.
A functional in C(G)ú is said to be central if it commutes with all the other
functionals.
If „ œ C(G)ú is central, the map T„ : C(G) ≠æ C(G) given by T„ = („¢ id)� is
called the central multiplier associated to „.

Definition 2.5.20 ([DCFY14]). A discrete quantum group ‚G is said to have the
central almost completely positive approximation property (central ACPAP) if
there is a net of central functionals (Ï⁄)⁄œI on C(G) such that:

• the operator TÏ⁄ = (Ï⁄ ¢ id) ¶ � induces a unital completely positive map
on Cr(G) for every ⁄ œ I

• the operator TÏ⁄ is approximated in the cb-norm by finitely supported central
multipliers for every ⁄ œ I

• lim⁄œI Ï⁄(‰–) dim(–)≠1 = 1 for every – œ Irr(G)

Remark 2.18. The central ACPAP is preserved under monoidal equivalence. More-
over, the central ACPAP is equivalent to the ACPAP (where the centrality condi-
tion is not required), if G is of Kac type.
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Proposition 2.5.21. Let B be a finite dimensional C*-algebra endowed with a
state Â. Let ‚G be a discrete quantum group with the central ACPAP and consider
the free wreath product H+

(B,Â)

(G). Suppose that, in the free product decomposition
ú̂ki=1

H+

(Bi,Âi)
(G), we have dim(Bi) Ø 4 for all i. Then, the dual of H+

(B,Â)

(G) has
the central ACPAP.

Proof. From [DCFY14, Proposition 24] we know that the central ACPAP is pre-
served by the operation of free product so it is enough to prove the result when
Â is a ”-form. In this case, the free wreath product is monoidally equivalent to
a quantum subgroup of Gú̂SUq(2), q œ (0, 1] by Theorem 2.5.9. Now, the dual of
SUq(2), q œ [≠1, 1], q ”= 0 has the central ACPAP ([DCFY14, Theorem 25]) so the
free product has the central ACPAP. This property is also preserved when passing
to quantum subgroups ([DCFY14, Lemma 23]) so the proof is complete.

The Haagerup property is implied by the central ACPAP, therefore we have
the following corollary.

Corollary 2.5.22. Consider the assumptions and the notations of Proposition
2.5.21. Then, the von Neumann algebra LŒ(H+

(B,Â)

(G)) has the Haagerup property
and the W*-CCAP.

Example 2.5.23. From [DCFY14], we know that the dual of SUq(2) with q œ
[≠1, 1], q ”= 0 as well as the duals of the free unitary and orthogonal quantum
groups U+(F ) and O+(F ) with dim(F ) Ø 2, have the central ACPAP . It follows
that, for any finite dimensional C*-algebra B, dim(B) Ø 4 endowed with a ”-form
Â, the von Neumann C*-algebras LŒ(H+

(B,Â)

(U+(F ))), LŒ(H+

(B,Â)

(O+(F ))) and
LŒ(H+

(B,Â)

(SUq(2))) have the Haagerup property.

By means of similar stability results it is possible to prove the exactness. The
definition of exactness is given in terms of the dual of a compact quantum group.
This definition is, however, equivalent to a second one, a sort of characterisation
which we will adopt as definition in this context.

Definition 2.5.24. A discrete quantum group ‚G is said to be exact if and only if its
reduced C*-algebra Cr(G) is exact, i.e. if the tensor product operation Cr(G) ¢

min

·
sends short exact sequences in short exact sequences.
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Proposition 2.5.25. Let B be a finite dimensional C*-algebra endowed with a
state Â. Let ‚G be an exact discrete quantum group and consider the reduced C*-
algebra Cr(H+

(B,Â)

(G)) with free product decomposition ú
red
k

i=1

Cr(H+

(Bi,Âi)
(G)).

If dim(Bi) Ø 4 for all i, then the dual of H+

(B,Â)

(G) is exact.

Proof. According to Definition 2.5.24, the proof consists in showing that the re-
duced C*-algebra Cr(H+

(B,Â)

(G)) is exact. In [Dyk04] it is proved that the exactness
is preserved by reduced free products, so it is enough to show the result for the fac-
tors Cr(G ÓúGaut(Bi,Âi)). Now, we use that exactness is conserved under monoidal
equivalence (see [VV07]), so we only need to prove the exactness of Cr(H). This
is a subalgebra of a free product whose factors are exact: ‚G is exact by hypoth-
esis and \SUq(2) is exact as a consequence of its amenability. Exactness passes to
subalgebras and free products so Cr(H) is exact.

Example 2.5.26. Let B a finite dimensional C*-algebra, dim(B) Ø 4, endowed
with a ”-form Â. It is well known that, if G is a compact group, the reduced C*-
algebra of the commutative quantum group G = (C(G),�) is exact. Then, from
the proposition above it follows that the dual of H+

(B,Â)

(G) is exact.
Moreover, SUq(2), q œ (≠1, 1), q ”= 0 is exact, so the dual of H+

(B,Â)

(SUq(2)) is
exact. In [VV07] it is proved that also O+(F ), for dim(F ) Ø 3 is exact; the
exactness of the dual of H+

(B,Â)

(O+(F )) follows.

Now, we prove, under some ulterior hypothesis, the simplicity of the reduced
C*-algebra and the uniqueness of the trace.

Proposition 2.5.27. Let B be a finite dimensional C*-algebra endowed with a
trace Â. Let G be a compact quantum group of Kac type. Consider the reduced
C*-algebra Cr(H+

(B,Â)

(G)) and its free product decomposition ú
red
k

i=1

Cr(H+

(Bi,Âi)
(G)).

If there is either only one factor (i.e. Â is a ”-trace) and dim(B) Ø 8 or there are
two or more factors with dim(Bi) Ø 4 for all i, then Cr(H+

(B,Â)

(G)) is simple with
unique trace.

Proof. The techniques and the results introduced for the proof of the analogous
result in the case of a discrete group (see Proposition 2.4.12) can be applied also
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here. In particular, if there are two or more factors we can still use a proposition
of Avitzour (see [Avi82, Section 3]). It states that, given two C*-algebras A and AÕ

endowed with tracial Haar states hA and hAÕ , the reduced free product C*-algebra
A ú

red

AÕ is simple with unique trace if there exist two unitary elements of Ker(hA)
orthogonal with respect to the scalar product induced by hA and a unitary element
in Ker(hAÕ). In order to show that, in our case, these elements exist we use a result
from [DHR97, Proposition 4.1 (i)] according to which, if a C*-algebra A endowed
with a normalized trace · admits an abelian sub-C*-algebra F so that the spectral
measure corresponding to ·|F is di�use, then there is a unitary element u œ A such
that ·(un) = 0 for each n œ Z, n ”= 0. Thanks to Remark 2.15, we know that the
spectral measure of the character of the generator a(1G) of an indecomposable free
wreath product G Óú Gaut(B,Â), Â ”-trace, is the free Poisson law of parameter
1 which is di�use. Then, we can find some elements which satisfy the Avitzour’s
condition and the proof of the simplicity and of the uniqueness of the trace in the
multifactor case is then completed.
In the second case, when Â is a ”-trace and there is not a free product decomposi-
tion, the proof is still a generalisation of the proof presented in [Lem14, Theorem
3.5]. Moreover, by making use of a trick introduced in [Wah14], where the proof is
extended to the case of G Óú S+

n , it is possible to remove the assumption of Lemeux
on the minimum number of irreducible representations of G.

2.5.7 The free wreath product of two quantum automor-
phism groups

We recall that G(X), the group of symmetries of a graph X with n vertices,
can be seen as a quotient of the symmetric group Sn. Moreover, when dealing with
the usual notion of wreath product, we can give a sort of geometric interpretation
thanks to formulas such as

G(X ú Y ) ≥= G(X) ÓG(Y )

for a suitable notion of product ú and only for graphs satisfying certain conditions.
The definition of free wreath product by a quantum permutation group given by
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Bichon allows us to find a quantum analogue of these results. More precisely, if we
denote by G+(X) the group of the quantum symmetries of a finite graph X, we
have formulas such as

G+(X ú Y ) ≥= G+(X) Óú G+(Y )

for a suitable notion of ú and some assumptions on the graphs (see [Bic04, BB07,
Cha15]).

In this paper, we introduced the notion of free wreath product by a quantum
automorphism group, generalising the previous one. Therefore, our aim is to find
a sort of analogue of these formulas in this more general context. We observe
that, while the quantum group S+

n can be seen as the symmetry group of a graph
composed by n vertices and no edges, such an interpretation is not possible for a
quantum automorphism group. We will think of Gaut(B,Â) as being the group of
the quantum symmetries of a finite quantum measured space.

Now, we prove some general results which will be fundamental for the proof of
such a formula. First of all, we introduce some notations.

Let B be a finite dimensional C*-algebra endowed with a ”-form Â. Letm and ÷
be the multiplication and unity on B respectively. Consider the free wreath product
H+

(B,Â)

(G) of a compact quantum group G by the quantum automorphism group
Gaut(B,Â). Choose a complete set of irreducible representations u– œ L(H–) ¢
C(G), – œ Irr(G). We recall that C(H+

(B,Â)

(G)) is generated by the coe�cients of
a family of unitary representations a(–),– œ Irr(G) such that ÷ œ Hom(1, a(1))
and, for all –, —, “ œ Irr(G) and all S œ Hom(u– ¢ u—, u“), we have a morphism
a(S) := m̂¢ S = (m¢ S) ¶ �

23

œ Hom(a(–)¢ a(—), a(“)).
For any finite dimensional representation u œ L(Hu) ¢ C(G) we define an

element a(u) œ L(B¢Hu)¢C(H+

(B,Â)

(G)) in the following way. For all – œ Irr(G)
such that – µ u, we choose a family of isometries S–,k œ L(H–, Hu) such that
S–,k œ Hom(u–, u), 1 Æ k Æ dim(Hom(u–, u)) and S–,kSú–,k are pairwise orthogonal
projection withq–,k S–,kSú–,k = idHu . Hence, u = q–,k(S–,k¢1)u–(Sú–,k¢1). Define

a(u) =
ÿ

–,k

(idB ¢ S–,k ¢ 1)a(–)(idB ¢ Sú–,k ¢ 1) œ L(B ¢Hu)¢ C(H+

(B,Â)

(G))
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Observe that the definition is coherent with the original a(–). For every finite
dimensional unitary representations of u, v and w of G and every morphism S œ
Hom(u ¢ v, w) define the linear map a(S) : B ¢ Hu ¢ B ¢ Hv æ B ¢ Hw by
a(S) = (mB ¢ S)�

23

. Observe that a(S) is coherent with the original definition,
when u, v and w are in Irr(G).

Proposition 2.5.28. For all finite dimensional unitary representation u, v of G
and all S œ Hom(u, v) the following holds.

0. The definition of a(u) does not depend on the isometries S–,k chosen

1. a(u) is a unitary representation of H+

(B,Â)

(G) on B ¢Hu.

2. idB ¢ S œ Hom(a(u), a(v)).

3. If u ƒ v then a(u) ƒ a(v).

1. For all finite dimensional unitary representations w of G and all S œ Hom(u¢
v, w), a(S) œ Hom(a(u) ¢ a(v), a(w)). Moreover, a(S)a(S)ú = ”idB ¢ SSú.
In particular, if Sú is isometric then ”≠ 1

2a(S)ú is isometric.

Proof. Let us prove (0). Let T—,l œ L(H—, Hu) be another family of isometries such
that T—,l œ Hom(u—, u), 1 Æ l Æ dim(Hom(u—, u)) and T—,lT ú—,l are pairwise orthog-
onal projections with q—,l T—,lT ú—,l = idHu . Observe that T ú—,lS–,k œ Hom(u–, u—).
Therefore, there exists ⁄—kl œ C such that T ú—,lS–,k = ”–,—⁄—klidHu— . Also note that
q

k ⁄
—
klS
ú
—,k = q

k T
ú
—,lS—,kS

ú
—,k = q

–,k T
ú
—,lS–,kS

ú
–,k since T ú—,lS–,k = 0 for – ”= —.

Hence, qk ⁄—klSú—,k = T ú—,l
1

q

–,k S–,kS
ú
–,k

2

= T ú—,l. It follows that
q

–,k(idB ¢ S–,k ¢ 1)a(–)(idB ¢ Sú–,k ¢ 1) =
q

–,—,k,l(idB ¢ T—,lT ú—,lS–,k ¢ 1)a(–)(idB ¢ Sú–,k ¢ 1) =
q

–,—,k,l(idB ¢ T—,l”–,—⁄—kl ¢ 1)a(–)(idB ¢ Sú–,k ¢ 1) =
q

—,k,l(idB ¢ T—,l ¢ 1)a(—)(idB ¢ ⁄—klSú—,k ¢ 1) =
q

—,l(idB ¢ T—,l ¢ 1)a(—)(idB ¢
1

q

k ⁄
—
klS
ú
—,k

2

¢ 1) =
q

—,l(idB ¢ T—,l ¢ 1)a(—)(idB ¢ T ú—,l ¢ 1)

(1) is obvious and (3) follows from (2). Let us prove (2). Write T—,l œ L(H—, Hv)
the chosen isometries such that T—,l œ Hom(u—, v), 1 Æ l Æ dim(Hom(u—, v)) and



116 2. The free wreath product

T—,lT ú—,l are pairwise orthogonal projections with q—,l T—,lT ú—,l = idHv . Observe that
T ú—,lSS–,k œ Hom(u–, u—). Therefore, there exists ⁄—kl œ C such that T ú—,lSS–,k =
”–,—⁄

—
kl. Also note that qk ⁄—klSú—,k = qk T ú—,lSS—,kSú—,k = q–,k T ú—,lSS–,kSú–,k since

T ú—,lSS–,k = 0 for – ”= —. Hence, qk ⁄—klSú—,k = T ú—,lS
1

q

–,k S–,kS
ú
–,k

2

= T ú—,lS. It
follows that

(idB ¢ S ¢ 1)a(u) =
ÿ

–,k

(idB ¢ SS–,k ¢ 1)a(–)(idB ¢ Sú–,k ¢ 1)

=
ÿ

–,—,k,l

(idB ¢ T—,lT ú—,lSS–,k ¢ 1)a(–)(idB ¢ Sú–,k ¢ 1)

=
ÿ

–,—,k,l

(idB ¢ T—,l”–,—⁄—kl ¢ 1)a(–)(idB ¢ Sú–,k ¢ 1)

=
ÿ

—,k,l

(idB ¢ T—,l ¢ 1)a(—)(idB ¢ ⁄—klSú—,k ¢ 1)

=
ÿ

—,l

(idB ¢ T—,l ¢ 1)a(—)(idB ¢
A

ÿ

k

⁄—klS
ú
—,k

B

¢ 1)

= a(v)(idB ¢ S ¢ 1).

Let us prove (4). Consider the decompositions u = q–,k(U–,k ¢ 1)u–(Uú–,k ¢ 1),
v = q—,l(V—,l ¢ 1)u—(V ú—,l ¢ 1) and w = q“,j(W“,j ¢ 1)u“(W ú“,j ¢ 1). Then, with
A = C(H+

(B,Â)

(G)),

a(u)
13

a(v)
23

= q–,—,k,l(idB ¢ U–,k ¢ idB¢Hv ¢ 1A)a(–)
13

(idB ¢ Uú–,k ¢ idB ¢ V—,l ¢ 1A)a(—)
23

(idB¢Hu ¢ idB ¢ V ú—,l ¢ 1A)

We have a(S)(idB ¢U–,k¢ idB¢Hv) = mB ¢ (S ¶ (U–,k ¢ idHv)) ¶�
23

and, by using
idHv = qV—,lV ú—,l and idHw = qW“,jW ú“,j, we find

S ¶ (U–,k ¢ idHv) =
ÿ

W“,j
1

W ú“,j ¶ S ¶ (U–,k ¢ V—,l)
2

V ú—,l

Hence,
a(S)(idB ¢ U–,k ¢ idB¢Hv) =
q

—,“,l,j

Ë

mB ¢
1

W“,j
1

W ú“,j ¶ S ¶ (U–,k ¢ V—,l)
2

V ú—,l
2È

¶ �
23

=
q(idB ¢W“,j)

Ë

mB ¢
1

W ú“,j ¶ S ¶ U–,k ¢ V—,l
2È

(idB ¢ idB ¢ idH– ¢ V ú—,l) ¶ �
23

=
q(idB ¢W“,j)

Ë

mB ¢
1

W ú“,j ¶ S ¶ U–,k ¢ V—,l
2È

�
23

(idB ¢ idH– ¢ idB ¢ V ú—,l) =
q

—,“,l,j(idB ¢W“,j)a(W ú“,j ¶ S ¶ U–,k ¢ V—,l)(idB ¢ idH– ¢ idB ¢ V ú—,l),
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where W ú“,j ¶ S ¶U–,k ¢ V—,l œ Hom(u– ¢ u—, u“). Hence, a(W ú“,j ¶ S ¶U–,k ¢ V—,l) œ
Hom(a(–)¢a(—), a(“)) and, by using 3, we find T–,—,“,k,l,j = (idB¢W“,j)a(W ú“,j ¶S¶
U–,k¢V—,l) œ Hom(a(–)¢a(—), a(w)). Hence, we find that (a(S)¢1A)(a(u)

13

a(v)
23

)
is equal to:

q

–,—,—Õ,“,k,l,lÕ,j T–,—Õ,“,k,lÕ,j(idB ¢ idH– ¢ idB ¢ V ú—Õ,lÕ)¢ 1Aa(–)13

(idB ¢ Uú–,k ¢ idB ¢ V—,l ¢ 1A)a(—)
23

(idB¢Hu ¢ idB ¢ V ú—,l ¢ 1A)

Since (idB ¢ idH– ¢ idB ¢V ú—Õ,lÕ ¢ 1A)a(–)
13

(idB ¢Uú–,k¢ idB ¢V—,l¢ 1A) is equal to

a(–)
13

(idB¢Uú–,k¢idB¢V ú—Õ,lÕV—,l¢1A) = ”—,—Õ”l,lÕa(–)13

(idB¢Uú–,k¢idB¢idH—¢1A),

we find that (a(S)¢ 1A)(a(u)
13

a(v)
23

) is equal to:

ÿ

–,—,“,k,l,j

(T–,—,“,k,l,j¢1A)a(–)
13

(idB¢Uú–,k¢idB¢H—¢1A)a(—)
23

(idB¢Hu¢idB¢V ú—,l¢1A)

=
ÿ

–,—,“,k,l,j

(T–,—,“,k,l,j ¢ 1A)a(–)
13

a(—)
23

(idB ¢ Uú–,k ¢ idB ¢ V ú—,l ¢ 1A)

=
ÿ

–,—,“,k,l,j

a(w)(T–,—,“,k,l,j ¢ 1A)(idB ¢ Uú–,k ¢ idB ¢ V ú—,l ¢ 1A).

Hence, it su�ces to check that a(S) = q–,—,“,k,l,j T–,—,“,k,l,j ¶(idB¢Uú–,k¢ idB¢V ú—,l).
This follows from the equation a(S)(idB¢U–,k¢ idB¢Hv) = q—,“,l,j T–,—,“,k,l,j(idB¢
idH– ¢ idB ¢ V ú—,l) for all –, k and the fact that idH– = q–,k U–,kUú–,k. Finally, we
have

a(S)a(S)ú = (mB ¢ S)�
23

�ú
23

(múB ¢ Sú) = (mBmúB ¢ SSú) = ”idB ¢ SSú

Remark 2.19. If we apply assertion 4 of Proposition 2.5.28 with w = u ¢ v and
S = idHu¢Hv , we get a morphism Su,v œ Hom(a(u) ¢ a(v), a(u ¢ v)). Hence,
Tu,v = ”≠ 1

2Súu,v œ Hom(a(u¢ v), a(u)¢ a(v)) is isometric so we always have a(u¢
v) µ a(u)¢ a(v).
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Theorem 2.5.29. Let B,BÕ be two finite dimensional C*-algebras, dimB,BÕ Ø 4,
endowed with a ”-form Â and a ”Õ-form ÂÕ respectively. Consider the quantum au-
tomorphism group Gaut(B¢BÕ,Â¢ÂÕ) and let U be its fundamental representation.
Then, we have the following isomorphism of C*-algebras.

C(Gaut(B ¢BÕ,Â ¢ ÂÕ))/I ≥= C(Gaut(BÕ,ÂÕ)) úw C(Gaut(B,Â))

where I µ C(Gaut(B ¢BÕ,Â¢ ÂÕ)) is the closed two-sided ú-ideal generated by the
relations corresponding to the condition idB ¢ ÷BÕ÷úBÕ œ End(U).

Proof. We fix the notationsM = C(Gaut(B¢BÕ,Â¢ÂÕ)) andN = C(Gaut(BÕ,ÂÕ))úw
C(Gaut(B,Â)). Let u œ L(BÕ)¢C(Gaut(BÕ,ÂÕ)) be the fundamental representation
of Gaut(BÕ,ÂÕ). Choose a complete set of representative of irreducible representa-
tions un œ L(Hn) ¢ C(Gaut(BÕ,ÂÕ)) with u

0

= 1 and u ƒ u
0

ü u
1

. Define the
unitary representation v œ L(B ¢BÕ)¢N of Gaut(BÕ,ÂÕ) Óú Gaut(B,Â) by

v = a(u) = (idB¢÷BÕ¢1N)a(u
0

)(idB¢÷úBÕ¢1N)+(idB¢S1

¢1N)a(u
1

)(idB¢Sú
1

¢1N)

where S
1

œ Hom(u
1

, u) is the unique isometry, up to S1, such that ÷BÕ÷úBÕ and S
1

Sú
1

are two orthogonal projections such that ÷BÕ÷úBÕ + S1

Sú
1

= idBÕ .
We claim that there exists a unital ú-homomorphism � : M æ N such that
(id ¢ �)(U) = v. By the universal property of the C*-algebra M , it su�ces to
check the following conditions.

1. ÷B¢BÕ œ Hom(1, v).

2. mB¢BÕ œ Hom(v¢2, v).

Let us prove (1). Since ÷BÕ÷úBÕ and S
1

Sú
1

are orthogonal we have Sú
1

÷BÕ = 0; it
follows that (idB ¢ Sú

1

)÷B¢BÕ = 0. Hence,

v(÷B¢BÕ ¢ 1N) = (idB ¢ ÷BÕ ¢ 1N)a(u
0

) ((idB ¢ ÷úBÕ) ¶ ÷B¢BÕ)¢ 1N)

Since (idB ¢ ÷úBÕ) ¶ ÷B¢BÕ = ÷B œ Hom(1, a(u
0

)) and (idB ¢ ÷BÕ) ¶ ÷B = ÷B¢BÕ we
find

v(÷B¢BÕ¢1N) = (idB¢÷BÕ¢1N)a(u
0

)(÷B¢1N) = ((idB ¢ ÷BÕ) ¶ ÷B)¢ 1N) = ÷B¢BÕ¢1N
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This proves (1). Let us prove (2). Observe that mB¢BÕ = (mB ¢ mBÕ)�23

=
a(mBÕ), where mBÕ œ Hom(u ¢ u, u). It follows from Proposition 2.5.28 that
mB¢BÕ œ Hom(v ¢ v, v).

Let fi : M ≠æ M/I be the canonical quotient map. If we apply assertion (2)
of Proposition 2.5.28 with ÷BÕ÷úBÕ œ End(u), we find that idB ¢ ÷BÕ÷úBÕ œ End(v).
It follows that the map � can be factorized through M/I. This means that there
exists a unique map Â� : M/I ≠æ N such that v = (idB¢BÕ ¢ �)(U) = (idB¢BÕ ¢
Â�)(idB¢BÕ ¢ fi)(U).

In order to construct a morphism in the opposite direction we need to define
some linear maps and to introduce some notations. All these definitions are given,
unless otherwise stated, for k œ N, k Ø 1.
Let �k be the unitary map �k : (B ¢ BÕ)¢k ≠æ B¢k ¢ BÕ¢k, oki=1

(bi ¢ bÕi) ‘æ
ok
i=1

bi ¢
ok
i=1

bÕi, where bi œ B and bÕi œ BÕ. We observe that, with this new
notation �

2

= �
23

.
Let m(k)

B : B¢k ≠æ B be the map which multiplies k elements of B; we set
m(1)

B = idB by convention. We observe that this map is unique and well defined by
the associativity of the multiplication. In particular, we havem(2)

B = mB. We claim
that, for any k Ø 2,m(k)

B (m(k)
B )ú = ”k≠1idB. The proof is by induction. If k = 1, it is

trivially true; if k = 2, it is clear thatmBmúB = ”idB. Let us suppose the result true
for k = l, i.e. m(l)

B (m(l)
B )ú = ”l≠1idB. We have thatm(l+1)

B = m(l)
B (mB¢id¢l≠1

B ) by as-
sociativity. Hence, m(l+1)

B (m(l+1)

B )ú = m(l)
B (mBmúB ¢ id¢l≠1

B )(m(l)
B )ú = ”m(l)

B (m(l)
B )ú =

”lidB. Then, the equality is true for k = l + 1. This completes the proof.
Define the map Tk = (m(k)

B ¢ id¢kBÕ )�k œ L((B ¢BÕ)¢k, B ¢BÕ¢k).
Let Sk œ Hom(uk, u¢k) be the unique isometry, up to S1, and define the isometry
Qk = ”≠ k≠1

2 T úk ¶ (idB ¢ Sk) œ L(B ¢ Hk, (B ¢ BÕ)¢k) for k Ø 2. For k = 0, we
define the isometry Q

0

= idB ¢ ÷BÕ œ Hom(a(u
0

), v).
Finally, for k Ø 1, consider the elements Ak = (Qúk ¢ 1M)U¢k(Qk ¢ 1M) œ
L(B ¢ Hk) ¢ M and, for k = 0, A

0

= (Qú
0

¢ 1M)U(Q
0

¢ 1M) œ L(B) ¢ M .
Denote by ÂAk = (id¢fi)(Ak) œ L(B¢Hk)¢M/I the projections of the Ak, k œ N
on the quotient. Let V = (id¢ fi)(U) œ L(B¢BÕ)¢M/I be the projection of the
fundamental representation U .
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We claim that there exists a unital ú-homomorphism � : N ≠æM/I such that
(id¢�)(a(uk)) = ÂAk for all k œ N. By the universal property of the C*-algebra N
it su�ces to check the following.

1. A
0

(÷B ¢ 1M) = ÷B ¢ 1M .

2. ÂAk œ L(B ¢Hk)¢M/I is unitary for all k Ø 0.

3. For all k, l, t œ N and R œ Hom(uk¢ul, ut), (mB¢R)�
23

œ Hom( ÂAk¢ ÂAl, ÂAt).

Let us prove (1). Since ÷B ¢ ÷BÕ = ÷B¢BÕ œ Hom(1, U), we have

A
0

(÷B ¢ 1M) = (idB ¢ ÷úBÕ ¢ 1M)U(idB ¢ ÷BÕ ¢ 1M)(÷B ¢ 1M)

= (idB ¢ ÷úBÕ ¢ 1M)U(÷B ¢ ÷BÕ ¢ 1M)

= ÷B ¢ ÷úBÕ÷BÕ ¢ 1M
= ÷B ¢ 1M .

Let us prove (2). We have AkAúk = (Qúk ¢ 1M)U¢k(QkQúk ¢ 1M)(U¢k)ú(Qk ¢ 1M).
We have Q

0

Qú
0

= idB ¢ ÷BÕ÷úBÕ and Q
1

Qú
1

= idB ¢ S1

Sú
1

= idB ¢ (idBÕ ≠ ÷BÕ÷úBÕ) =
idB¢BÕ ≠Q0

Qú
0

. By definition of I, we have

V (Q
0

Qú
0

¢ 1M/I) = (Q
0

Qú
0

¢ 1M/I)V,

and

V (Q
1

Qú
1

¢ 1M/I) = V (1≠Q
0

Qú
0

¢ 1M/I)

= (1≠Q
0

Qú
0

¢ 1M/I)V

= (Q
1

Qú
1

¢ 1M/I)V.

It follows that, for k = 0, 1,
ÂAk ÂAúk = (Qúk ¢ 1M/I)V (QkQúk ¢ 1M/I)V ú(Qk ¢ 1M/I)

= (QúkQkQúk ¢ 1M/I)V V ú(Qk ¢ 1M/I)
= (QúkQkQúkQk ¢ 1M/I)
= idB¢Hk ¢ 1M/I .
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The proof of ÂAúk ÂAk = idB¢Hk ¢ 1M/I when k = 0, 1 is the same.
In order to prove (2) when k Ø 2 and to check (3) we introduce the following
lemma.

Lemma 2.5.30. For all k, l œ N, k, l Ø 1 and T œ L(BÕ¢k, BÕ¢l) we define the
map

„k,l(T ) = �úl ((m
(l)
B )úm(k)

B ¢ T )�k œ L((B ¢BÕ)¢k, (B ¢BÕ)¢l)

We fix the notation „k := „k,k(id¢kBÕ ). Then, we have

(i). „k œ End(V ¢k)

(ii). For all T œ L(BÕ¢k, BÕ¢l) and S œ L(BÕ¢l, BÕ¢t) we have:

• „l,t(S)„k,l(T ) = ”l≠1„k,t(S ¶ T )

• „k,l(T )ú = „l,k(T ú)

(iii). „k,k≠1

(id¢sBÕ¢mBÕ¢id¢sÕBÕ ) = „k≠1

¶(id¢sB¢BÕ¢mB¢BÕ¢id¢sÕB¢BÕ) œ Hom(V ¢k, V ¢k≠1)
for all k Ø 2 and all s, sÕ Ø 0 such that s+ sÕ + 2 = k

(iv). • „k,k≠1

(id¢sBÕ ¢ ÷úBÕ ¢ id¢sÕBÕ ) = „k≠1

¶ (id¢s≠1

B¢BÕ ¢ (mB ¢ idBÕ ¢ ÷úBÕ)�23

¢
id¢sÕB¢BÕ) œ Hom(V ¢k, V ¢k≠1) for all k Ø 2 and all s Ø 1, sÕ Ø 0 such
that s+ sÕ + 1 = k

• „k,k≠1

(÷úBÕ¢id¢k≠1

BÕ ) = „k≠1

¶((mB¢÷úBÕ¢idBÕ)�23

¢id¢k≠2

B¢BÕ) œ Hom(V ¢k, V ¢k≠1)
for all k Ø 2

(v). „k,l(T ) œ Hom(V ¢k, V ¢l) for all T œ Hom(u¢k, u¢l)

Proof. (i). If k = 1, „
1

= idB¢BÕ œ End(V ).
When k Ø 2 we prove the result by induction on k. If k = 2, we have „

2

=
�

23

(múBmB ¢ id¢2

BÕ )�23

. We want to prove that „
2

œ End(V ¢2).
Let L = �ú

3

((m(3)

B )úmB ¢ idBÕ ¢ ÷BÕ ¢ idBÕ)�2

. We claim that

L = (idB¢BÕ¢mB¢BÕ¢ idB¢BÕ)(�ú
2

(múB¢ idBÕ¢÷BÕ)¢�ú
2

(múB¢÷BÕ¢ idBÕ)) (2.16)

Let us evaluate the two maps on the element b
1

¢ bÕ
1

¢ b
2

¢ bÕ
2

œ (B¢BÕ)¢2. In the
first case we have
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�ú
3

((m(3)

B )úmB ¢ idBÕ ¢ ÷BÕ ¢ idBÕ)�2

(b
1

¢ bÕ
1

¢ b
2

¢ bÕ
2

) =
�ú

3

((m(3)

B )úmB(b
1

¢ b
2

)¢ bÕ
1

¢ 1BÕ ¢ bÕ
2

=
�b12

(1)

¢ bÕ
1

¢ b12

(2)

¢ 1BÕ ¢ b12

(3)

¢ bÕ
2

where we used the notation (m(3)

B )úmB(b
1

¢ b
2

) = �b12

(1)

¢ b12

(2)

¢ b12

(3)

.
In the second case we have
(idB¢BÕ ¢mB¢BÕ ¢ idB¢BÕ)(�ú

2

(múB ¢ idBÕ ¢ ÷BÕ)¢ �ú
2

(múB ¢ ÷BÕ ¢ idBÕ))
(b

1

¢ bÕ
1

¢ b
2

¢ bÕ
2

) =
(idB¢BÕ ¢mB¢BÕ ¢ idB¢BÕ)(�ú

2

(múB(b
1

)¢ bÕ
1

¢ 1BÕ)¢ �ú
2

(múB(b
2

)¢ 1BÕ ¢ bÕ
2

)) =
(idB¢BÕ ¢mB¢BÕ ¢ idB¢BÕ)(�b1

(1)

¢ bÕ
1

¢ b1
(2)

¢ 1BÕ ¢ b2
(1)

¢ 1BÕ ¢ b2
(2)

¢ bÕ
2

) =
(�b1

(1)

¢ bÕ
1

¢mB(b1
(2)

¢ b2
(1)

)¢ 1BÕ ¢ b2
(2)

¢ bÕ
2

)
where we used the notation múB(bi) = �bi

(1)

¢ bi
(2)

for i = 1, 2.
We observe that the two elements of (B ¢ BÕ)¢3 which we found are equal if
and only if (m(3)

B )úmB = (idB ¢ mB ¢ idB)(múB ¢ múB). This can be verified by
drawing the noncrossing partitions associated to the di�erent maps and by using
the compatibility with respect to the multiplication proved in Proposition 2.3.5.
In both cases, the noncrossing partition obtained after the composition is

• •

• • •

It follows that relation 2.16 is verified. Now, let T = (mB¢÷úBÕ¢ idBÕ)�23

. Observe
that

mBÕ ¶ (÷BÕ÷úBÕ ¢ idBÕ) = ÷úBÕ ¢ idBÕ

Hence,
T = [mB ¢ (mBÕ ¶ (÷BÕ÷úBÕ ¢ idBÕ))] �

23

= [(mB ¢mBÕ) ¶ (idB ¢ idB ¢ ÷BÕ÷úBÕ ¢ idBÕ))] �
23

= (mB ¢mBÕ)�23

(idB ¢ ÷BÕ÷úBÕ ¢ idB ¢ idBÕ)
= mB¢BÕ ¶ ((idB ¢ ÷BÕ÷úBÕ)¢ idB¢BÕ)

By definition of I we have idB¢÷BÕ÷úBÕ œ End(V ) and since mB¢BÕ œ Hom(U¢2, U)
we deduce that T œ End(V ¢2, V ).
Similarly, let Z = (mB ¢ idBÕ ¢ ÷úBÕ)�23

. By using that idBÕ ¢ ÷úBÕ = mBÕ ¶
(idBÕ ¢ ÷BÕ÷úBÕ), we find Z = mB¢BÕ ¶ (idB¢BÕ ¢ (idB ¢ ÷BÕ÷úBÕ)). It follows that
Z œ Hom(V ¢2, V ).
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We observe that L = (idB¢BÕ ¢ mB¢BÕ ¢ idB¢BÕ)(Zú ¢ T ú); it follows that L œ
Hom(V ¢2, V ¢3).
In order to complete the proof of the case k = 2, it is enough to observe that
LúL = �ú

2

(múBm
(3)

B ¢ idBÕ ¢ ÷úBÕ ¢ idBÕ)�3

�ú
3

((m(3)

B )úmB ¢ idBÕ ¢ ÷úBÕ ¢ idBÕ)�2

= �ú
2

(múBm
(3)

B (m(3)

B )úmB ¢ id¢2

BÕ )�2

= ”2„
2

where we used that m(3)

B (m(3)

B )ú = ”2idB. It follows that „
2

œ End(V ¢2).
Now, let us prove that, if „k≠1

œ End(V ¢k≠1), then „k œ End(V ¢k). We claim
that, for any k Ø 2, the following holds

„k = (id¢k≠2

B¢BÕ ¢ „2

)(„k≠1

¢ idB¢BÕ) (2.17)

Let us evaluate this map on the general element oki=1

(bi ¢ bÕi) œ (B ¢ BÕ)¢k. We
have
(id¢k≠2

B¢BÕ ¢ „2

)(„k≠1

¢ idB¢BÕ)(
ok
i=1

(bi ¢ bÕi)) =
(id¢k≠2

B¢BÕ ¢ „2

)[(�úk≠1

((m(k≠1)

B )úm(k≠1)

B ¢ id¢k≠1

BÕ )�k≠1

)¢ idB¢BÕ ](
ok
i=1

(bi ¢ bÕi)) =
(id¢k≠2

B¢BÕ ¢ �ú
2

(múBmB ¢ id¢2

BÕ )�2

)(�úk≠1

(�ok≠1

i=1

bC1

(i) ¢
ok≠1

i=1

bÕi)¢ bk ¢ bÕk) =
�ok≠2

i=1

(bC1

(i) ¢ bÕi)¢ �ú
2

(múBmB(bC1

(k≠1)

¢ bk)¢ bÕk≠1

¢ bÕk) =
�ok≠2

i=1

(bC1

(i) ¢ bÕi)¢ b
C

2

(1)

¢ bÕk≠1

¢ bC2

(2)

¢ bÕk
where we used the notations (m(k≠1)

B )úm(k≠1)

B (ok≠1

i=1

bi) = �ok≠1

i=1

bC1

(i) andmúBmB(bC1

(k≠1)

¢
bk) = �bC2

(1)

¢ bC2

(2)

When we evaluate „k according to its definition, we get
�úk((m

(k)
B )úm(k)

B ¢ id¢kBÕ )�k(
ok
i=1

(bi ¢ bÕi)) = �oki=1

(bC3

(i) ¢ bÕi)
where we used the notation (m(k)

B )úm(k)
B (oki=1

bi) = �oki=1

bC3

(i) .
We observe that the two elements obtained are equal if and only if

(m(k)
B )úm(k)

B = (id¢k≠2

B ¢múBmB)((m(k≠1)

B )úm(k≠1)

B ¢ idB)

This formula can be verified by considering the noncrossing partitions associated
to the di�erent maps and by applying Proposition 2.3.5. We have

•1 •2 . . . • • •
k ≠ 1 k

1 2 k ≠ 1 k

• •
. . .

• • •

• • • • •

=
• • . . . • •1 2 k ≠ 1 k

1 2 k ≠ 1 k
• • . . . • •
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This completes the proof of relation 2.17. In order to complete the induction it
is enough to use the inductive hypothesis. The map „k can be obtained through
tensor products and compositions of the intertwiners idB¢BÕ ,„2

,„k≠1

; it follows
that „k œ End(V ¢k).
(ii). The composition formula can be checked as follows
„l,t(S)„k,l(T ) = �út ((m

(t)
B )úm(l)

B ¢ S)�l�úl ((m
(l)
B )úm(k)

B ¢ T )�k
= �út ((m

(t)
B )úm(l)

B (m(l)
B )úm(k)

B ¢ ST )�k
= ”l≠1�út ((m

(t)
B )úm(k)

B ¢ ST )�k
= ”l≠1„k,t(S ¶ T )

where we used that m(l)
B (m(l)

B )ú = ”l≠1idB.
Now, we prove the compatibility with respect to the adjoint operation. We have
„k,l(T )ú = (�úl ((m

(l)
B )úm(k)

B ¢ T )�k)ú

= �úk((m
(k)
B )úm(l)

B ¢ T ú)�l
= „l,k(T ú)

(iii). We have
„k≠1

¶ (id¢sB¢BÕ ¢mB¢BÕ ¢ id¢sÕB¢BÕ) =
�úk≠1

((m(k≠1)

B )úm(k≠1)

B ¢ id¢k≠1

BÕ )�k≠1

(id¢sB¢BÕ ¢mB¢BÕ ¢ id¢sÕB¢BÕ) =
�úk≠1

((m(k≠1)

B )úm(k≠1)

B ¢ id¢k≠1

BÕ )(id¢sB ¢mB ¢ id¢sÕB ¢ id¢sBÕ ¢mBÕ ¢ id¢sÕBÕ )�k =
�úk≠1

((m(k≠1)

B )úm(k)
B ¢ id¢sBÕ ¢mBÕ ¢ id¢sÕBÕ )�k =

„k,k≠1

(id¢sBÕ ¢mBÕ ¢ id¢sÕBÕ )
where the second equality follows from
�k≠1

(id¢sB¢BÕ ¢mB¢BÕ ¢ id¢sÕB¢BÕ)(
ok
i=1

(bi ¢ bÕi)) =
�k≠1

(osi=1

(bi ¢ bÕi)¢mB(bs+1

¢ bs+2

)¢mBÕ(bÕs+1

¢ bÕs+2

)¢oki=s+3

(bi ¢ bÕi)) =
os
i=1

bi ¢mB(bs+1

¢ bs+2

)¢oki=s+3

bi ¢
os
i=1

bÕi ¢mBÕ(bÕs+1

¢ bÕs+2

)¢oki=s+3

bÕi =
(id¢sB ¢mB ¢ id¢sÕB ¢ id¢sBÕ ¢mBÕ ¢ id¢sÕBÕ )�k(

ok
i=1

(bi ¢ bÕi))
and for the third equality we observe that m(k≠1)

B (id¢sB ¢mB¢id¢sÕB ) = m(k)
B because

the multiplication is associative.
Now, mB¢BÕ œ Hom(U¢2, U) by definition and „k≠1

œ End(V ¢k≠1) by the assertion
(i) of this Lemma. It follows that „k,k≠1

(id¢sBÕ ¢mBÕ ¢ id¢sÕBÕ ) œ Hom(V ¢k, V ¢k≠1)
(iv). We have
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„k≠1

¶ (id¢s≠1

B¢BÕ ¢ (mB ¢ idBÕ ¢ ÷úBÕ)�23

¢ id¢sÕB¢BÕ) =
�úk≠1

((m(k≠1)

B )úm(k≠1)

B ¢ id¢k≠1

BÕ )�k≠1

(id¢s≠1

B¢BÕ ¢ (mB ¢ idBÕ ¢ ÷úBÕ)�23

¢ id¢sÕB¢BÕ) =
�úk≠1

((m(k≠1)

B )úm(k≠1)

B ¢ id¢k≠1

BÕ )(id¢s≠1

B ¢mB ¢ id¢sÕB ¢ id¢sBÕ ¢ ÷úBÕ ¢ id¢sÕBÕ )�k =
�úk≠1

((m(k≠1)

B )úm(k)
B ¢ id¢sBÕ ¢ ÷úBÕ ¢ id¢sÕBÕ )�k =

„k,k≠1

(id¢sBÕ ¢ ÷úBÕ ¢ id¢sÕBÕ )
As in the proof of assertion (iii) the second equality can be checked by evaluating
the two maps on an element of (B ¢BÕ)¢k and the third follows from the associa-
tivity of mB.
If s = 0 and sÕ = k ≠ 1 the formula is slightly di�erent but the computations are
analogous. We have
„k≠1

¶ ((mB ¢ ÷úBÕ ¢ idBÕ)�23

¢ id¢k≠2

B¢BÕ) =
�úk≠1

((m(k≠1)

B )úm(k≠1)

B ¢ id¢k≠1

BÕ )�k≠1

((mB ¢ ÷úBÕ ¢ idBÕ)�23

¢ id¢k≠2

B¢BÕ) =
�úk≠1

((m(k≠1)

B )úm(k≠1)

B ¢ id¢k≠1

BÕ )(mB ¢ id¢k≠2

B ¢ ÷úBÕ ¢ id¢k≠1

BÕ )�k =
�úk≠1

((m(k≠1)

B )úm(k)
B ¢ ÷úBÕ ¢ id¢k≠1

BÕ )�k =
„k,k≠1

(÷úBÕ ¢ id¢k≠1

BÕ )
Since in the proof of assertion (i) we showed that (mB ¢ idBÕ ¢ ÷úBÕ)�23

and
(mB ¢ ÷úBÕ ¢ idBÕ)�23

are in Hom(V ¢2, V ) and „k≠1

œ End(V ¢k≠1) by (i), we
have that „k,k≠1

(id¢sBÕ ¢ ÷úBÕ ¢ id¢sÕBÕ ) œ Hom(V ¢k, V ¢k≠1).
(v). Thanks to Theorem 2.3.7 we know that the morphisms associated to the
noncrossing partitions in NC(k, l) form a linear basis of Hom(u¢k, u¢l). More-
over, every morphism of such a basis can be seen as the composition of the mor-
phisms id¢sBÕ ¢ mBÕ ¢ id¢sÕBÕ œ Hom(u¢s+sÕ+2, u¢s+s

Õ
+1) and id¢sBÕ ¢ ÷BÕ ¢ id¢sÕBÕ œ

Hom(u¢s+sÕ , u¢s+sÕ+1) and of their adjoints. This fact, together with the assertions
(ii), (iii) and (iv) of Lemma 2.5.30, implies that „k,l(T ) œ Hom(V ¢k, V ¢l) for all
T œ Hom(u¢k, u¢l).

Now, we go back to the proof of (2), when k Ø 2. We have that,

QkQ
ú
k = ”≠(k≠1)T úk ¶ (idB ¢ SkSúk) ¶ Tk

= ”≠(k≠1)�úk((m
(k)
B )úm(k)

B ¢ SkSúk)�k
= ”≠(k≠1)„k,k(SkSúk)

Since SkSúk œ End(u¢k); it follows that QkQúk œ End(V ¢k) by Lemma 2.5.30 (v).
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It is now easy to verify that ÂAk is unitary.
Let us check the last condition. We have to prove that, for all k, l, t œ N and
R œ Hom(uk¢ul, ut), (mB¢R)�

23

œ Hom( ÂAk¢ ÂAl, ÂAt). Since the Qs are isometries
and QsQús œ End(V ¢s), we have the following sequence of equivalent conditions.
((mB ¢R)�

23

¢ 1M/I)(Qúk ¢Qúl ¢ 1M/I)V ¢k+l(Qk ¢Ql ¢ 1M/I) =
(Qút ¢ 1M/I)V ¢t(Qt ¢ 1M/I)((mB ¢R)�

23

¢ 1M/I)

(Qt ¢ 1M/I)((mB ¢R)�
23

¢ 1M/I)(Qúk ¢Qúl ¢ 1M/I)V ¢k+l(QkQúk ¢QlQúl ¢ 1M/I) =
(QtQút ¢ 1M/I)V ¢t(Qt ¢ 1M/I)((mB ¢R)�

23

¢ 1M/I)(Qúk ¢Qúl ¢ 1M/I)

(Qt ¢ 1M/I)((mB ¢R)�
23

¢ 1M/I)(QúkQkQúk ¢QúlQlQúl ¢ 1M/I)V ¢k+l =
V ¢t(QtQútQt ¢ 1M/I)((mB ¢R)�

23

¢ 1M/I)(Qúk ¢Qúl ¢ 1M/I)

(Qt ¢ 1M/I)((mB ¢R)�
23

¢ 1M/I)(Qúk ¢Qúl ¢ 1M/I)V ¢k+l =
V ¢t(Qt ¢ 1M/I)((mB ¢R)�

23

¢ 1M/I)(Qúk ¢Qúl ¢ 1M/I)
Then, the original condition is equivalent to

Qt(mB ¢R)�
23

(Qúk ¢Qúl ) œ Hom(V ¢k+l, V ¢t)

Now, if we replace every Qi with its definition and we fix K = ”≠ k+l+t≠3

2 , we get
Qt(mB ¢R)�

23

(Qúk ¢Qúl ) =
K�út (m

(t)ú
B ¢ id¢tBÕ)(idB ¢ St)(mB ¢R)�

23

[(idB ¢ Súk)(m
(k)
B ¢ id¢kBÕ )�k ¢ (idB ¢ Súl )(m

(l)
B ¢ id¢lBÕ)�l] =

K�út (m
(t)ú
B ¢ St)(mB ¢R)�

23

(m(k)
B ¢m

(l)
B ¢ Súk ¢ Súl )(�k ¢ �l) =

K�út (m
(t)ú
B ¢ St)(mB ¢R)(m(k)

B ¢m
(l)
B ¢ Súk ¢ Súl )Á�23

(�k ¢ �l) =
K�út (m

(t)ú
B m

(k+l)
B ¢ StR(Súk ¢ Súl ))Á�23

(�k ¢ �l) =
K�út (m

(t)ú
B m

(k+l)
B ¢ StR(Súk ¢ Súl ))�k+l =

K„k+l,t(StR(Súk ¢ Súl ))
where Á�

23

: B¢k¢BÕ¢k¢B¢l¢BÕ¢l ≠æ B¢k+l¢BÕ¢k+l is the map that exchanges
BÕ¢k and B¢l. It is easy to check that Á�

23

(�k ¢ �l) = �k+l. In the third equal-
ity we used that mB(m(k)

B ¢m
(l)
B ) = m(k+l)

B ; this is due to the associativity of the
multiplication. Since St, Sk, Sl and R are intertwiners of Gaut(BÕ,ÂÕ), we have that
StR(Súk ¢ Súl ) œ Hom(u¢k ¢ u¢l, u¢t). We can then apply Lemma 2.5.30 (v) and
find that „k+l,t(StR(Súk ¢ Súl )) œ Hom(V ¢k+l, V ¢t). This completes the proof of



2.5 The free wreath product G Óú Gaut(B,Â) 127

(3).
What is left is to prove that the morphisms Â� and � are inverse to each other. We
have
(id¢ � Â�)(V ) = (id¢ �)(id¢�)(U)

= (id¢ �)(v)
= (Q

0

¢ 1M/I) ÂA0

(Qú
0

¢ 1M/I) + (Q
1

¢ 1M/I) ÂA1

(Qú
1

¢ 1M/I)
= (Q

0

Qú
0

¢ 1M)V (Q
0

Qú
0

¢ 1M) + (Q
1

Qú
1

¢ 1M)V (Q
1

Qú
1

¢ 1M)
= ((Q

0

Qú
0

+Q
1

Qú
1

)¢ 1M)V ((Q
0

Qú
0

+Q
1

Qú
1

)¢ 1M)
= V

since, for s = 0, 1, the Qs are isometries such that QsQs œ End(V ) and Q
0

Qú
0

+
Q

1

Qú
1

= idB¢BÕ . Similarly
(id¢ Â�)(id¢ �)(a(uk)) = (id¢ Â�)( ÂAk)

= (id¢ Â�)(id¢ fi)(Ak)
= (id¢�)(Ak)
= (Qúk ¢ 1N)(id¢�)(U¢k)(Qk ¢ 1N)
= (Qúk ¢ 1N)v¢k(Qk ¢ 1N)
= a(uk)

The last equality requires particular attention. It is verified if and only if Qk œ
Hom(a(uk), a(u)¢k), therefore, in order to complete the proof, we have to check
that the map Qk defined during the proof is in Hom(a(uk), a(u)¢k). If k = 0, 1, it
is clear. In the general case, for k Ø 2, we recall that
Qúk = ”≠ k≠1

2 (idB ¢ Sk) ¶ Tk = ”≠ k≠1

2 (idB ¢ Sk)(m(k)
B ¢ id¢kBÕ )�k

We claim that
Qúk = (idB ¢ Sk) ¶ ”Õ≠

1

2 (mB ¢ id¢kBÕ )�23

¶ (idB¢BÕ ¢ ”Õ≠
1

2 (mB ¢ id¢k≠1

BÕ )�
23

) ¶ ...
... ¶ (id¢k≠2

B¢BÕ ¢ ”Õ≠
1

2 (mB ¢ id¢2

BÕ )�23

)
This can be easily verified by evaluating the two formulations of Qúk on a gen-
eral element of (B ¢ BÕ)¢k. The equality depends essentially on the associa-
tivity of the multiplication. Moreover, we observe that ”Õ≠ 1

2 (mB ¢ id¢kBÕ )�23

œ
Hom(a(u)¢a(u¢k≠1), a(u¢k)) by Proposition 2.5.28 (4). Therefore, the linear map
Qúk can be obtained as composition and tensor product of morphisms. It follows
that Qúk œ Hom(a(u)¢k, a(uk)) and Qk œ Hom(a(uk), a(u)¢k).
The two morphisms � and Â� are then inverse to each other and the isomorphism
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is proved.

Remark 2.20. We observe that this theorem is coherent with the previous results
of Banica and Bichon. In [BB07], they investigated the free wreath product of two
quantum permutation groups and, in the particular case of two quantum symmetric
groups, they proved that

C(S+

mn)/I ≥= C(S+

m) úw C(S+

n )

where I µ C(S+

mn) is the closed two-sided ú-ideal generated by the relations cor-
responding to the condition idCn ¢ ÷Cm÷úCm œ End(U) and U is the fundamental
representation of S+

mn.
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[VK74] L. Ĭ. Văınerman and G. I. Kac. Nonunimodular ring groups and Hopf-
von Neumann algebras. Mat. Sb. (N.S.), 94(136):194–225, 335, 1974.

[VV07] Stefaan Vaes and Roland Vergnioux. The boundary of universal discrete
quantum groups, exactness, and factoriality. Duke Math. J., 140(1):35–
84, 2007.



134 BIBLIOGRAPHY

[Wah14] Jonas Wahl. A note on reduced and von neumann algebraic free wreath
products. preprint arXiv:1411.4861, 2014.

[Wan93] Shuzhou Wang. General constructions of compact quantum groups.
ProQuest LLC, Ann Arbor, MI, 1993. Thesis (Ph.D.)–University of
California, Berkeley.

[Wan95] Shuzhou Wang. Free products of compact quantum groups. Comm.
Math. Phys., 167(3):671–692, 1995.

[Wan98] Shuzhou Wang. Quantum symmetry groups of finite spaces. Comm.
Math. Phys., 195(1):195–211, 1998.

[Wor87] S. L. Woronowicz. Compact matrix pseudogroups. Comm. Math. Phys.,
111(4):613–665, 1987.

[Wor88] S. L. Woronowicz. Tannaka-Krĕın duality for compact matrix pseu-
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